Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Rev Eukaryot Gene Expr ; 30(6): 519-541, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33463919

RESUMEN

Obesity is marked by the buildup of fat in adipose tissue that increases body weight and the risk of many associated health problems, including diabetes and cardiovascular disease. Treatment options for obesity are limited, and available medications have many side effects. Thus there is a great need to find alternative medicines for treating obesity. This study explores the anti-adipogenic potential of the n-butanol fraction of Cissus quadrangularis (CQ-B) on 3T3-L1 mouse preadipocyte cell line. The expression of various lipogenic marker genes such as adiponectin, peroxisome proliferator-activated receptor gamma, leptin, fatty acid-binding proteins, sterol regulatory element-binding proteins, fetal alcohol syndrome, steroyl-CoA desaturase-1, lipoproteins, acetyl-CoA carboxylase alpha, and acetyl-CoA carboxylase beta were variously significantly downregulated. After establishing the anti-adipogenic potential of CQ-B, it was fractionated to isolate anti-adipogenic compounds. We observed significant reduction in neutral lipid content of differentiated cells treated with various fractions of CQ-B. Gas chromatography-mass spectrometry analysis revealed the presence of thirteen compounds with reported anti-adipogenic activities. Further studies to purify these compounds can offer efficacious and viable treatment options for obesity and related complications.


Asunto(s)
Adipogénesis/efectos de los fármacos , Cissus/química , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Células 3T3-L1 , Acetil-CoA Carboxilasa/genética , Adiponectina/genética , Animales , Ácido Graso Desaturasas/genética , Proteínas de Unión a Ácidos Grasos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Leptina/genética , Ratones , Obesidad/genética , Obesidad/patología , PPAR gamma/genética , Extractos Vegetales/química , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
2.
J Cell Physiol ; 234(7): 10300-10314, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30443977

RESUMEN

In a sequel to investigate osteogenic potential of ethanolic extract of Cissus quadrangularis (CQ), the present study reports the osteoblast differentiation and mineralization potential of ethyl acetate (CQ-EA) and butanol (CQ-B) extracts of CQ on mouse pre-osteoblast cell line MC3T3-E1 (sub-clone 4) with an objective to isolate an antiosteoporotic compound. Growth curve, proliferation, and viability assays showed that both the extracts were nontoxic to the cells even at high concentration (100 µg/ml). The cell proliferation was enhanced at low concentrations (0.1 µg/ml and 1 µg/ml) of both the extracts. They also upregulated the osteoblast differentiation and mineralization processes in MC3T3-E1 cells as reflected by expression profile of osteoblast marker genes such as RUNX2, Osterix, Collagen (COL1A1), Alkaline Phosphatase (ALP), Integrin-related Bone Sialoprotein (IBSP), Osteopontin (OPN), and Osteocalcin (OCN). CQ-EA treatment resulted in early differentiation and mineralization as compared with the CQ-B treatment. These findings suggest that low concentrations of CQ-EA and CQ-B have proliferative and osteogenic properties. CQ-EA, however, is more potent osteogenic than CQ-B.


Asunto(s)
Calcificación Fisiológica/efectos de los fármacos , Cissus/química , Osteoblastos/efectos de los fármacos , Extractos Vegetales/farmacología , 1-Butanol/química , Acetatos/química , Fosfatasa Alcalina/metabolismo , Animales , Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Ratones , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteogénesis/efectos de los fármacos , Osteopontina/metabolismo , Extractos Vegetales/química , Regulación hacia Arriba/efectos de los fármacos
3.
Materials (Basel) ; 14(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203928

RESUMEN

Human interferon α2 (IFNα2) and thymosin α1 (Tα1) are therapeutic proteins used for the treatment of viral infections and different types of cancer. Both IFNα2 and Tα1 show a synergic effect in their activities when used in combination. Furthermore, the therapeutic fusion proteins produced through the genetic fusion of two genes can exhibit several therapeutic functions in one molecule. In this study, we determined the anticancer and antiviral effect of human interferon α2-thymosin α1 fusion protein (IFNα2-Tα1) produced in our laboratory for the first time. The cytotoxic and genotoxic effect of IFNα2-Tα1 was evaluated in HepG2 and MDA-MB-231 cells. The in vitro assays confirmed that IFNα2-Tα1 inhibited the growth of cells more effectively than IFNα2 alone and showed an elevated genotoxic effect. The expression of proapoptotic genes was also significantly enhanced in IFNα2-Tα1-treated cells compared to IFNα2-treated cells. Furthermore, the HCV RNA level was significantly reduced in IFNα2-Tα1-treated HCV-infected Huh7 cells compared to IFNα2-treated cells. The quantitative PCR analysis showed that the expression of various genes, the products of which inhibit HCV replication, was significantly enhanced in IFNα2-Tα1-treated cells compared to IFNα2-treated cells. Our findings demonstrate that IFNα2-Tα1 is more effective than single IFNα2 as an anticancer and antiviral agent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA