Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neuroinflammation ; 20(1): 299, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098019

RESUMEN

BACKGROUND: The neurological effects of the coronavirus disease of 2019 (COVID-19) raise concerns about potential long-term consequences, such as an increased risk of Alzheimer's disease (AD). Neuroinflammation and other AD-associated pathologies are also suggested to increase the risk of serious SARS-CoV-2 infection. Anosmia is a common neurological symptom reported in COVID-19 and in early AD. The olfactory mucosa (OM) is important for the perception of smell and a proposed site of viral entry to the brain. However, little is known about SARS-CoV-2 infection at the OM of individuals with AD. METHODS: To address this gap, we established a 3D in vitro model of the OM from primary cells derived from cognitively healthy and AD individuals. We cultured the cells at the air-liquid interface (ALI) to study SARS-CoV-2 infection under controlled experimental conditions. Primary OM cells in ALI expressed angiotensin-converting enzyme 2 (ACE-2), neuropilin-1 (NRP-1), and several other known SARS-CoV-2 receptor and were highly vulnerable to infection. Infection was determined by secreted viral RNA content and confirmed with SARS-CoV-2 nucleocapsid protein (NP) in the infected cells by immunocytochemistry. Differential responses of healthy and AD individuals-derived OM cells to SARS-CoV-2 were determined by RNA sequencing. RESULTS: Results indicate that cells derived from cognitively healthy donors and individuals with AD do not differ in susceptibility to infection with the wild-type SARS-CoV-2 virus. However, transcriptomic signatures in cells from individuals with AD are highly distinct. Specifically, the cells from AD patients that were infected with the virus showed increased levels of oxidative stress, desensitized inflammation and immune responses, and alterations to genes associated with olfaction. These results imply that individuals with AD may be at a greater risk of experiencing severe outcomes from the infection, potentially driven by pre-existing neuroinflammation. CONCLUSIONS: The study sheds light on the interplay between AD pathology and SARS-CoV-2 infection. Altered transcriptomic signatures in AD cells may contribute to unique symptoms and a more severe disease course, with a notable involvement of neuroinflammation. Furthermore, the research emphasizes the need for targeted interventions to enhance outcomes for AD patients with viral infection. The study is crucial to better comprehend the relationship between AD, COVID-19, and anosmia. It highlights the importance of ongoing research to develop more effective treatments for those at high risk of severe SARS-CoV-2 infection.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Humanos , SARS-CoV-2 , Anosmia/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/metabolismo , Mucosa Olfatoria/metabolismo
2.
Biomacromolecules ; 24(11): 4705-4717, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37680126

RESUMEN

Galectins, the glycan binding proteins, and their respective carbohydrate ligands represent a unique fundamental regulatory network modulating a plethora of biological processes. The advances in galectin-targeted therapy must be based on a deep understanding of the mechanism of ligand-protein recognition. Carbosilane dendrimers, the well-defined and finely tunable nanoscaffolds with low toxicity, are promising for multivalent carbohydrate ligand presentation to target galectin receptors. The study discloses a synthetic method for two types of lactose-functionalized carbosilane glycodendrimers (Lac-CS-DDMs). Furthermore, we report their outstanding, dendritic effect-driven affinity to tandem-type galectins, especially Gal-9. In the enzyme-linked immunosorbent assay, the affinity of the third-generation multivalent dendritic ligand bearing 32 lactose units to Gal-9 reached nanomolar values (IC50 = 970 nM), being a 1400-fold more effective inhibitor than monovalent lactose for this protein. This demonstrates a game-changing impact of multivalent presentation on the inhibitory effect of a ligand as simple as lactose. Moreover, using DLS hydrodynamic diameter measurements, we correlated the increased affinity of the glycodendrimer ligands to Gal-3 and Gal-8 but especially to Gal-9 with the formation of relatively uniform and stable galectin/Lac-CS-DDM aggregates.


Asunto(s)
Galectinas , Lactosa , Ligandos , Unión Proteica , Galectinas/metabolismo , Polisacáridos
3.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163587

RESUMEN

DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and it can serve as a useful biomarker of prior environmental exposure and future health outcomes. This study focused on DNA methylation profiles in a human cohort, comprising 125 nonsmoking city policemen (sampled twice), living and working in three localities (Prague, Ostrava and Ceske Budejovice) of the Czech Republic, who spent the majority of their working time outdoors. The main characterization of the localities, differing by major sources of air pollution, was defined by the stationary air pollution monitoring of PM2.5, B[a]P and NO2. DNA methylation was analyzed by a genome-wide microarray method. No season-specific DNA methylation pattern was discovered; however, we identified 13,643 differentially methylated CpG loci (DML) for a comparison between the Prague and Ostrava groups. The most significant DML was cg10123377 (log2FC = -1.92, p = 8.30 × 10-4) and loci annotated to RPTOR (total 20 CpG loci). We also found two hypomethylated loci annotated to the DNA repair gene XRCC5. Groups of DML annotated to the same gene were linked to diabetes mellitus (KCNQ1), respiratory diseases (PTPRN2), the dopaminergic system of the brain and neurodegenerative diseases (NR4A2). The most significant possibly affected pathway was Axon guidance, with 86 potentially deregulated genes near DML. The cluster of gene sets that could be affected by DNA methylation in the Ostrava groups mainly includes the neuronal functions and biological processes of cell junctions and adhesion assembly. The study demonstrates that the differences in the type of air pollution between localities can affect a unique change in DNA methylation profiles across the human genome.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Metilación de ADN/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Policia , Adulto , República Checa , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad
4.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35456941

RESUMEN

Olfactory function, orchestrated by the cells of the olfactory mucosa at the rooftop of the nasal cavity, is disturbed early in the pathogenesis of Alzheimer's disease (AD). Biometals including zinc and calcium are known to be important for sense of smell and to be altered in the brains of AD patients. Little is known about elemental homeostasis in the AD patient olfactory mucosa. Here we aimed to assess whether the disease-related alterations to biometal homeostasis observed in the brain are also reflected in the olfactory mucosa. We applied RNA sequencing to discover gene expression changes related to metals in olfactory mucosal cells of cognitively healthy controls, individuals with mild cognitive impairment and AD patients, and performed analysis of the elemental content to determine metal levels. Results demonstrate that the levels of zinc, calcium and sodium are increased in the AD olfactory mucosa concomitantly with alterations to 17 genes related to metal-ion binding or metal-related function of the protein product. A significant elevation in alpha-2-macroglobulin, a known metal-binding biomarker correlated with brain disease burden, was observed on the gene and protein levels in the olfactory mucosa cells of AD patients. These data demonstrate that the olfactory mucosa cells derived from AD patients recapitulate certain impairments of biometal homeostasis observed in the brains of patients.


Asunto(s)
Enfermedad de Alzheimer , Oligoelementos , Enfermedad de Alzheimer/metabolismo , Calcio/metabolismo , Quelantes/metabolismo , Humanos , Mucosa Olfatoria/metabolismo , Oligoelementos/metabolismo , Zinc/metabolismo
5.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34360600

RESUMEN

A DNA methylation pattern represents an original plan of the function settings of individual cells and tissues. The basic strategies of its development and changes during the human lifetime are known, but the details related to its modification over the years on an individual basis have not yet been studied. Moreover, current evidence shows that environmental exposure could generate changes in DNA methylation settings and, subsequently, the function of genes. In this study, we analyzed the effect of chronic exposure to nanoparticles (NP) in occupationally exposed workers repeatedly sampled in four consecutive years (2016-2019). A detailed methylation pattern analysis of 14 persons (10 exposed and 4 controls) was performed on an individual basis. A microarray-based approach using chips, allowing the assessment of more than 850 K CpG loci, was used. Individual DNA methylation patterns were compared by principal component analysis (PCA). The results show the shift in DNA methylation patterns in individual years in all the exposed and control subjects. The overall range of differences varied between the years in individual persons. The differences between the first and last year of examination (a three-year time period) seem to be consistently greater in the NP-exposed subjects in comparison with the controls. The selected 14 most differently methylated cg loci were relatively stable in the chronically exposed subjects. In summary, the specific type of long-term exposure can contribute to the fixing of relevant epigenetic changes related to a specific environment as, e.g., NP inhalation.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica/efectos de los fármacos , Nanopartículas/efectos adversos , Enfermedades Profesionales/epidemiología , Exposición Profesional/efectos adversos , Adulto , Estudios de Casos y Controles , Islas de CpG , República Checa/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Profesionales/inducido químicamente , Enfermedades Profesionales/genética
6.
Mutagenesis ; 35(4): 331-340, 2020 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-32701136

RESUMEN

The extensive development of nanotechnologies and nanomaterials poses a number of questions to toxicologists about the potential health risks of exposure to nanoparticles (NP). In this study, we analysed DNA damage in the leukocytes of 20 workers who were long-term exposed (18 ± 10 years) to NP in their working environment. Blood samples were collected in September 2016, before and after a shift, to assess (i) the chronic effects of NP on DNA (pre-shift samples) and (ii) the acute effects of exposure during the shift (the difference between pre- and post-shift samples). The samples from matched controls were taken in parallel with workers before the shift. Leukocytes were isolated from heparinised blood on a Ficoll gradient. The enzyme-modified comet assay (DNA formamido-pyrimidine-glycosylase and endonuclease III) demonstrated a considerable increase of both single- and double-strand breaks in DNA (DNA-SB) and oxidised bases when compared with the controls (2.4× and 2×, respectively). Acute exposure induced a further increase of DNA-SB. The welding and smelting of nanocomposites represented a higher genotoxic risk than milling and grinding of nanocomposite surfaces. Obesity appeared to be a factor contributing to an increased risk of oxidative damage to DNA. The data also indicated a higher susceptibility of males vs. females to NP exposure. The study was repeated in September 2017. The results exhibited similar trend, but the levels of DNA damage in the exposed subjects were lower compared to previous year. This was probably associated with lower exposure to NP in consequence of changes in nanomaterial composition and working operations. The further study involving also monitoring of personal exposures to NP is necessary to identify (i) the main aerosol components responsible for genotoxic effects in workers handling nanocomposites and (ii) the primary cause of gender differences in response to NP action.


Asunto(s)
Daño del ADN , Leucocitos/efectos de los fármacos , Nanocompuestos/toxicidad , Exposición Profesional/efectos adversos , Adulto , Ensayo Cometa , ADN/efectos de los fármacos , ADN/metabolismo , ADN-Formamidopirimidina Glicosilasa , Desoxirribonucleasa (Dímero de Pirimidina) , Proteínas de Escherichia coli , Femenino , Humanos , Leucocitos/metabolismo , Masculino , Persona de Mediana Edad , Mutágenos , Estrés Oxidativo , Factores Sexuales , Adulto Joven
7.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374749

RESUMEN

Gasoline engine emissions have been classified as possibly carcinogenic to humans and represent a significant health risk. In this study, we used MucilAir™, a three-dimensional (3D) model of the human airway, and BEAS-2B, cells originating from the human bronchial epithelium, grown at the air-liquid interface to assess the toxicity of ordinary gasoline exhaust produced by a direct injection spark ignition engine. The transepithelial electrical resistance (TEER), production of mucin, and lactate dehydrogenase (LDH) and adenylate kinase (AK) activities were analyzed after one day and five days of exposure. The induction of double-stranded DNA breaks was measured by the detection of histone H2AX phosphorylation. Next-generation sequencing was used to analyze the modulation of expression of the relevant 370 genes. The exposure to gasoline emissions affected the integrity, as well as LDH and AK leakage in the 3D model, particularly after longer exposure periods. Mucin production was mostly decreased with the exception of longer BEAS-2B treatment, for which a significant increase was detected. DNA damage was detected after five days of exposure in the 3D model, but not in BEAS-2B cells. The expression of CYP1A1 and GSTA3 was modulated in MucilAir™ tissues after 5 days of treatment. In BEAS-2B cells, the expression of 39 mRNAs was affected after short exposure, most of them were upregulated. The five days of exposure modulated the expression of 11 genes in this cell line. In conclusion, the ordinary gasoline emissions induced a toxic response in MucilAir™. In BEAS-2B cells, the biological response was less pronounced, mostly limited to gene expression changes.


Asunto(s)
Bronquios/citología , Células Epiteliales/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Adenilato Quinasa/metabolismo , Células Cultivadas , Roturas del ADN de Doble Cadena , Impedancia Eléctrica , Células Epiteliales/metabolismo , Humanos , L-Lactato Deshidrogenasa/metabolismo , Mucinas/metabolismo , Pruebas de Toxicidad/métodos , Transcriptoma
8.
Int J Mol Sci ; 21(13)2020 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32635498

RESUMEN

This study presents a toxicological evaluation of two types of carbon dots (CD), similar in size (<10 nm) but differing in surface charge. Whole-genome mRNA and miRNA expression (RNAseq), as well as gene-specific DNA methylation changes, were analyzed in human embryonic lung fibroblasts (HEL 12469) after 4 h and 24 h exposure to concentrations of 10 and 50 µg/mL (for positive charged CD; pCD) or 10 and 100 µg/mL (for negative charged CD, nCD). The results showed a distinct response for the tested nanomaterials (NMs). The exposure to pCD induced the expression of a substantially lower number of mRNAs than those to nCD, with few commonly differentially expressed genes between the two CDs. For both CDs, the number of deregulated mRNAs increased with the dose and exposure time. The pathway analysis revealed a deregulation of processes associated with immune response, tumorigenesis and cell cycle regulation, after exposure to pCD. For nCD treatment, pathways relating to cell proliferation, apoptosis, oxidative stress, gene expression, and cycle regulation were detected. The expression of miRNAs followed a similar pattern: more pronounced changes after nCD exposure and few commonly differentially expressed miRNAs between the two CDs. For both CDs the pathway analysis based on miRNA-mRNA interactions, showed a deregulation of cancer-related pathways, immune processes and processes involved in extracellular matrix interactions. DNA methylation was not affected by exposure to any of the two CDs. In summary, although the tested CDs induced distinct responses on the level of mRNA and miRNA expression, pathway analyses revealed a potential common biological impact of both NMs independent of their surface charge.


Asunto(s)
Carbono/farmacología , Metilación de ADN/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Pulmón/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Metilación de ADN/genética , Matriz Extracelular/genética , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Humanos , MicroARNs/genética , Neoplasias/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , ARN Mensajero/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
9.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244494

RESUMEN

The risk of exposure to nanoparticles (NPs) has rapidly increased during the last decade due to the vast use of nanomaterials (NMs) in many areas of human life. Despite this fact, human biomonitoring studies focused on the effect of NP exposure on DNA alterations are still rare. Furthermore, there are virtually no epigenetic data available. In this study, we investigated global and gene-specific DNA methylation profiles in a group of 20 long-term (mean 14.5 years) exposed, nanocomposite, research workers and in 20 controls. Both groups were sampled twice/day (pre-shift and post-shift) in September 2018. We applied Infinium Methylation Assay, using the Infinium MethylationEPIC BeadChips with more than 850,000 CpG loci, for identification of the DNA methylation pattern in the studied groups. Aerosol exposure monitoring, including two nanosized fractions, was also performed as proof of acute NP exposure. The obtained array data showed significant differences in methylation between the exposed and control groups related to long-term exposure, specifically 341 CpG loci were hypomethylated and 364 hypermethylated. The most significant CpG differences were mainly detected in genes involved in lipid metabolism, the immune system, lung functions, signaling pathways, cancer development and xenobiotic detoxification. In contrast, short-term acute NP exposure was not accompanied by DNA methylation changes. In summary, long-term (years) exposure to NP is associated with DNA epigenetic alterations.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Nanopartículas/efectos adversos , Exposición Profesional , Adulto , Anciano , Epigénesis Genética , Femenino , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Nanocompuestos/efectos adversos , Adulto Joven
10.
Mutagenesis ; 34(2): 153-164, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-30852615

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) may cause lipid peroxidation via reactive oxygen species generation. 15-F2t-isoprostane (IsoP), an oxidative stress marker, is formed from arachidonic acid (AA) by a free-radical induced oxidation. AA may also be converted to prostaglandins (PG) by prostaglandin-endoperoxide synthase (PTGS) induced by NF-κB. We treated human embryonic lung fibroblasts (HEL12469) with benzo[a]pyrene (B[a]P), 3-nitrobenzanthrone (3-NBA) and extractable organic matter (EOM) from ambient air particulate matter <2.5 µm for 4 and 24 h. B[a]P and 3-NBA induced expression of PAH metabolising, but not antioxidant enzymes. The concentrations of IsoP decreased, whereas the levels of AA tended to increase. Although the activity of NF-κB was not detected, the tested compounds affected the expression of prostaglandin-endoperoxide synthase 2 (PTGS2). The levels of prostaglandin E2 (PGE2) decreased following exposure to B[a]P, whereas 3-NBA exposure tended to increase PGE2 concentration. A distinct response was observed after EOM exposure: expression of PAH-metabolising enzymes was induced, IsoP levels increased after 24-h treatment but AA concentration was not affected. The activity of NF-κB increased after both exposure periods, and a significant induction of PTGS2 expression was found following 4-h treatment. Similarly to PAHs, the EOM exposure was associated with a decrease of PGE2 levels. In summary, exposure to PAHs with low pro-oxidant potential results in a decrease of IsoP levels implying 'antioxidant' properties. For such compounds, IsoP may not be a suitable marker of lipid peroxidation.


Asunto(s)
Peroxidación de Lípido/efectos de los fármacos , Pulmón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Atmosféricos/toxicidad , Ácido Araquidónico/metabolismo , Hidrocarburo de Aril Hidroxilasas/metabolismo , Benzo(a)Antracenos/toxicidad , Benzo(a)pireno/toxicidad , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Dinoprost/análogos & derivados , Dinoprost/biosíntesis , Dinoprost/metabolismo , Dinoprostona/biosíntesis , Dinoprostona/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Humanos , Pulmón/citología , Pulmón/embriología , Pulmón/enzimología , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
Mutagenesis ; 34(3): 253-263, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31233148

RESUMEN

The application of nanomaterials has been rapidly increasing during recent years. Inhalation exposure to nanoparticles (NP) may result in negative toxic effects but there is a critical lack of human studies, especially those related to possible DNA alterations. We analyzed pre-shift and post-shift a group of nanocomposite researchers with a long-term working background (17.8 ± 10.0 years) and matched controls. The study group consisted of 73.2% males and 26.8% females. Aerosol exposure monitoring during a working shift (involving welding, smelting, machining) to assess the differences in exposure to particulate matter (PM) including nanosized fractions <25-100 nm, and their chemical analysis, was carried out. A micronucleus assay using Human Pan Centromeric probes, was applied to distinguish between the frequency of centromere positive (CEN+) and centromere negative (CEN-) micronuclei (MN) in the binucleated cells. This approach allowed recognition of the types of chromosomal damage: losses and breaks. The monitoring data revealed differences in the exposure to NP related to individual working processes, and in the chemical composition of nanofraction. The cytogenetic results of this pilot study demonstrated a lack of effect of long-term (years) exposure to NP (total frequency of MN, P = 0.743), although this exposure may be responsible for DNA damage pattern changes (12% increase of chromosomal breaks-clastogenic effect). Moreover, short-term (daily shift) exposure could be a reason for the increase of chromosomal breaks in a subgroup of researchers involved in welding and smelting processes (clastogenic effect, P = 0.037). The gender and/or gender ratio of the study participants was also an important factor for the interpretation of the results. As this type of human study is unique, further research is needed to understand the effects of long-term and short-term exposure to NP.


Asunto(s)
Análisis Citogenético , Nanopartículas , Exposición Profesional , Material Particulado , Adulto , Análisis Citogenético/métodos , Femenino , Humanos , Masculino , Pruebas de Micronúcleos/métodos , Persona de Mediana Edad , Mutágenos/efectos adversos , Exposición Profesional/efectos adversos , Material Particulado/efectos adversos , Proyectos Piloto , Adulto Joven
12.
Occup Environ Med ; 76(1): 10-16, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30425118

RESUMEN

OBJECTIVES: This study aimed to assess the biological impact of occupational exposure to diesel exhaust (DE) including DE particles (DEP) from heavy-duty diesel-powered equipment in Norwegian tunnel finishing workers (TFW). METHODS: TFW (n=69) and referents (n=69) were investigated for bulky DNA adducts (by 32P-postlabelling) and expression of microRNAs (miRNAs) (by small RNA sequencing) in peripheral blood mononuclear cells (PBMC), as well as circulating free arachidonic acid (AA) and eicosanoid profiles in plasma (by liquid chromatography-tandem mass spectrometry). RESULTS: PBMC from TFW showed significantly higher levels of DNA adducts compared with referents. Levels of DNA adducts were also related to smoking habits. Seventeen miRNAs were significantly deregulated in TFW. Several of these miRNAs are related to carcinogenesis, apoptosis and antioxidant effects. Analysis of putative miRNA-gene targets revealed deregulation of pathways associated with cancer, alterations in lipid molecules, steroid biosynthesis and cell cycle. Plasma profiles showed higher levels of free AA and 15-hydroxyeicosatetraenoic acid, and lower levels of prostaglandin D2 and 9-hydroxyoctadecadienoic acid in TFW compared with referents. CONCLUSION: Occupational exposure to DE/DEP is associated with biological alterations in TFW potentially affecting lung homoeostasis, carcinogenesis, inflammation status and the cardiovascular system. Of particular importance is the finding that tunnel finishing work is associated with an increased level of DNA adducts formation in PBMC.


Asunto(s)
Industria de la Construcción , Aductos de ADN/sangre , Lípidos/sangre , MicroARNs/sangre , Exposición Profesional/efectos adversos , Emisiones de Vehículos/toxicidad , Adulto , Contaminantes Ocupacionales del Aire/análisis , Biomarcadores/sangre , Estudios Transversales , Humanos , Exposición por Inhalación/análisis , Leucocitos Mononucleares/química , Modelos Lineales , Masculino , Persona de Mediana Edad , Noruega
13.
Altern Lab Anim ; 47(1): 9-18, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31237164

RESUMEN

Cells grown in monocultures are widely used to model lung tissue. As a result of these culture conditions, these cells exhibit poor morphological similarity to those present in in vivo lung tissue. MucilAir™, a 3-D in vitro model comprising human basal, goblet and ciliated cells, represents a fully differentiated respiratory epithelium that can be used as an alternative and a more realistic system. The aim of our study was to compare the effects of short-term and long-term exposure to two polycyclic aromatic hydrocarbons (PAHs) - benzo[a]pyrene (B[a]P) and 3-nitrobenzanthrone (3-NBA) - using MucilAir as a model of human lung tissue. Two concentrations (0.1 µM and 1 µM) were tested at three time points (24 hours, 7 days and 28 days). Several aspects were assessed: cytotoxicity (lactate dehydrogenase (LDH) release), integrity of the cell layer (transepithelial electrical resistance (TEER)), induction of oxidative stress (reactive oxygen species production) and changes in the expression of selected genes involved in PAH metabolism (CYP1A1 and AKR1C2) and the antioxidant response (ALDH3A1, SOD1, SOD2, GPX1, CAT, HMOX1 and TXNRD1). The results showed that exposure to B[a]P caused a spike in LDH release at day 5. Exposure to 3-NBA caused a number of spikes in LDH release, starting at day 5, and a decrease in TEER after 11 days. CYP1A1 gene expression was upregulated after the 7-day and 28-day B[a]P exposures, as well as after the 24-hour and 7-day 3-NBA exposures. HMOX1 and SOD1 were downregulated after both 24-hour PAH treatments. HMOX1 was upregulated after a 1-week exposure to 3-NBA. There were no significant changes in the messenger RNA (mRNA) levels of AKR1C2, ALDH3A1, TXNRD1, SOD2, GPX1 or CAT. These results illustrate the potential use of this 3-D in vitro lung tissue model in studying the effects of chronic exposure to PAHs.


Asunto(s)
Células Cultivadas , Modelos Biológicos , Hidrocarburos Policíclicos Aromáticos , Células Cultivadas/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Pulmón/citología , Pulmón/efectos de los fármacos , Hidrocarburos Policíclicos Aromáticos/toxicidad
14.
Int J Mol Sci ; 20(22)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739528

RESUMEN

The biological effects induced by complete engine emissions in a 3D model of the human airway (MucilAirTM) and in human bronchial epithelial cells (BEAS-2B) grown at the air-liquid interface were compared. The cells were exposed for one or five days to emissions generated by a Euro 5 direct injection spark ignition engine. The general condition of the cells was assessed by the measurement of transepithelial electrical resistance and mucin production. The cytotoxic effects were evaluated by adenylate kinase (AK) and lactate dehydrogenase (LDH) activity. Phosphorylation of histone H2AX was used to detect double-stranded DNA breaks. The expression of the selected 370 relevant genes was analyzed using next-generation sequencing. The exposure had minimal effects on integrity and AK leakage in both cell models. LDH activity and mucin production in BEAS-2B cells significantly increased after longer exposures; DNA breaks were also detected. The exposure affected CYP1A1 and HSPA5 expression in MucilAirTM. There were no effects of this kind observed in BEAS-2B cells; in this system gene expression was rather affected by the time of treatment. The type of cell model was the most important factor modulating gene expression. In summary, the biological effects of complete emissions exposure were weak. In the specific conditions used in this study, the effects observed in BEAS-2B cells were induced by the exposure protocol rather than by emissions and thus this cell line seems to be less suitable for analyses of longer treatment than the 3D model.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Modelos Biológicos , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Emisiones de Vehículos/toxicidad , Biomarcadores , Roturas del ADN , Impedancia Eléctrica , Chaperón BiP del Retículo Endoplásmico , Expresión Génica , Humanos , Mucinas/biosíntesis
15.
Cent Eur J Public Health ; 27(4): 305-311, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31951690

RESUMEN

OBJECTIVES: To our knowledge this is the first study measuring personal exposure to carcinogenic polycyclic aromatic hydrocarbons (cPAHs) bound to airborne particulate matter ≤ 2.5 µm (PM2.5) in periods of high air pollution (smog episode) in which citizen were tracked. METHODS: Measurements were performed in industrial regions of the Czech Republic: Ostrava, Karviná, Havírov. The city of Prague served as a control. Personal monitoring was conducted by active personal monitors for 48 hours. Non-smoking city policemen from Prague, Karviná and Havírov, office workers from Ostrava city and volunteers from Ostrava-Radvanice and Bartovice participated in the study (N = 214). RESULTS: The average personal exposure to benzo[a]pyrene (B[a]P) was highest in Ostrava (17.2 ng/m3), followed by Karviná, Havírov, Radvanice and Bartovice, and Prague (14.2, 12.0, 9.3, and 2.8 ng/m3, respectively). We tested for association between the personal exposure to cPAHs and various health-related factors extracted from the questionnaires, including lifestyle factors and day-to-day activities. CONCLUSIONS: Exposure to outdoor cPAHs, environmental tobacco smoke (ETS), commuting, and time spent indoors (in restaurants, workplace or home) were found to be the main determinants of the personal exposure. Daily cPAHs measurements in highly polluted areas are needed for evaluating the personal exposure and to avoid its underestimation resulting from stationary monitoring.


Asunto(s)
Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Hidrocarburos Policíclicos Aromáticos/análisis , Esmog/análisis , Ciudades , República Checa , Monitoreo del Ambiente , Humanos
16.
Arch Toxicol ; 91(5): 2135-2150, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27830268

RESUMEN

Butyrate, a short-chain fatty acid produced by fermentation of dietary fiber, is an important regulator of colonic epithelium homeostasis. In this study, we investigated the impact of this histone deacetylase (HDAC) inhibitor on expression/activity of cytochrome P450 family 1 (CYP1) and on metabolism of carcinogenic polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP), in colon epithelial cells. Sodium butyrate (NaBt) strongly potentiated the BaP-induced expression of CYP1A1 in human colon carcinoma HCT116 cells. It also co-stimulated the 7-ethoxyresorufin-O-deethylase (EROD) activity induced by the 2,3,7,8-tetrachlorodibenzo-p-dioxin, a prototypical ligand of the aryl hydrocarbon receptor. Up-regulation of CYP1A1 expression/activity corresponded with an enhanced metabolism of BaP and formation of covalent DNA adducts. NaBt significantly potentiated CYP1A1 induction and/or metabolic activation of BaP also in other human colon cell models, colon adenoma AA/C1 cells, colon carcinoma HT-29 cells, or in NCM460D cell line derived from normal colon mucosa. Our results suggest that the effects of NaBt were due to its impact on histone acetylation, because additional HDAC inhibitors (trichostatin A and suberanilohydroxamic acid) likewise increased both the induction of EROD activity and formation of covalent DNA adducts. NaBt-induced acetylation of histone H3 (at Lys14) and histone H4 (at Lys16), two histone modifications modulated during activation of CYP1A1 transcription, and it reduced binding of HDAC1 to the enhancer region of CYP1A1 gene. This in vitro study suggests that butyrate, through modulation of histone acetylation, may potentiate induction of CYP1A1 expression, which might in turn alter the metabolism of BaP within colon epithelial cells.


Asunto(s)
Benzo(a)pireno/farmacocinética , Ácido Butírico/farmacología , Colon/efectos de los fármacos , Citocromo P-450 CYP1A1/metabolismo , Benzo(a)pireno/metabolismo , Colon/metabolismo , Citocromo P-450 CYP1A1/genética , Aductos de ADN/efectos de los fármacos , Aductos de ADN/metabolismo , Elementos de Facilitación Genéticos/efectos de los fármacos , Células HCT116 , Células HT29 , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 1/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Humanos , Inactivación Metabólica , beta Catenina/metabolismo
17.
Int J Mol Sci ; 17(11)2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27827897

RESUMEN

This study used toxicogenomics to identify the complex biological response of human lung BEAS-2B cells treated with organic components of particulate matter in the exhaust of a diesel engine. First, we characterized particles from standard diesel (B0), biodiesel (methylesters of rapeseed oil) in its neat form (B100) and 30% by volume blend with diesel fuel (B30), and neat hydrotreated vegetable oil (NEXBTL100). The concentration of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in organic extracts was the lowest for NEXBTL100 and higher for biodiesel. We further analyzed global gene expression changes in BEAS-2B cells following 4 h and 24 h treatment with extracts. The concentrations of 50 µg extract/mL induced a similar molecular response. The common processes induced after 4 h treatment included antioxidant defense, metabolism of xenobiotics and lipids, suppression of pro-apoptotic stimuli, or induction of plasminogen activating cascade; 24 h treatment affected fewer processes, particularly those involved in detoxification of xenobiotics, including PAHs. The majority of distinctively deregulated genes detected after both 4 h and 24 h treatment were induced by NEXBTL100; the deregulated genes included, e.g., those involved in antioxidant defense and cell cycle regulation and proliferation. B100 extract, with the highest PAH concentrations, additionally affected several cell cycle regulatory genes and p38 signaling.


Asunto(s)
Biocombustibles/toxicidad , Gasolina/toxicidad , Regulación de la Expresión Génica de las Plantas , Material Particulado/toxicidad , Proteínas de Plantas/genética , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Biocombustibles/análisis , Bronquios/citología , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Línea Celular Transformada , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Gasolina/análisis , Perfilación de la Expresión Génica , Humanos , Anotación de Secuencia Molecular , Material Particulado/análisis , Aceites de Plantas/química , Proteínas de Plantas/metabolismo , Hidrocarburos Policíclicos Aromáticos/análisis , Transducción de Señal , Emisiones de Vehículos/análisis
18.
Int J Mol Sci ; 17(9)2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27571070

RESUMEN

We investigated the toxicity of benzo[a]pyrene (B[a]P), 1-nitropyrene (1-NP) and 3-nitrobenzanthrone (3-NBA) in A549 cells. Cells were treated for 4 h and 24 h with: B[a]P (0.1 and 1 µM), 1-NP (1 and 10 µM) and 3-NBA (0.5 and 5 µM). Bulky DNA adducts, lipid peroxidation, DNA and protein oxidation and mRNA expression of CYP1A1, CYP1B1, NQO1, POR, AKR1C2 and COX2 were analyzed. Bulky DNA adducts were induced after both treatment periods; the effect of 1-NP was weak. 3-NBA induced high levels of bulky DNA adducts even after 4-h treatment, suggesting rapid metabolic activation. Oxidative DNA damage was not affected. 1-NP caused protein oxidation and weak induction of lipid peroxidation after 4-h incubation. 3-NBA induced lipid peroxidation after 24-h treatment. Unlike B[a]P, induction of the aryl hydrocarbon receptor, measured as mRNA expression levels of CYP1A1 and CYP1B1, was low after treatment with polycyclic aromatic hydrocarbon (PAH) nitro-derivatives. All test compounds induced mRNA expression of NQO1, POR, and AKR1C2 after 24-h treatment. AKR1C2 expression indicates involvement of processes associated with reactive oxygen species generation. This was supported further by COX2 expression induced by 24-h treatment with 1-NP. In summary, 3-NBA was the most potent genotoxicant, whereas 1-NP exhibited the strongest oxidative properties.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Células A549 , Células Epiteliales Alveolares/metabolismo , Benzo(a)Antracenos/toxicidad , Benzo(a)pireno/toxicidad , Ciclooxigenasa 2/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Sistema Enzimático del Citocromo P-450/genética , Aductos de ADN/efectos de los fármacos , Aductos de ADN/genética , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Humanos , Hidroxiesteroide Deshidrogenasas/genética , NAD(P)H Deshidrogenasa (Quinona)/genética , Pirenos/toxicidad
19.
Mutagenesis ; 30(4): 565-76, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25805023

RESUMEN

Deregulation of Wnt/ß-catenin signalling plays an important role in the pathogenesis of colorectal cancer. Interestingly, this pathway has been recently implicated in transcriptional control of cytochrome P450 (CYP) family 1 enzymes, which are responsible for bioactivation of a number of dietary carcinogens. In the present study, we investigated the impact of inhibition of Wnt/ß-catenin pathway on metabolism and genotoxicity of benzo[a]pyrene (BaP), a highly mutagenic polycyclic aromatic hydrocarbon and an efficient ligand of the aryl hydrocarbon receptor, which is known as a primary regulator of CYP1 expression, in cellular models derived from colorectal tumours. We observed that a synthetic inhibitor of ß-catenin, JW74, significantly increased formation of BaP-induced DNA adducts in both colorectal adenoma and carcinoma-derived cell lines. Using the short interfering RNA (siRNA) targeting ß-catenin, we then found that ß-catenin knockdown in HCT116 colon carcinoma cells significantly enhanced formation of covalent DNA adducts by BaP and histone H2AX phosphorylation, as detected by (32)P-postlabelling technique and immunocytochemistry, respectively, and it also induced expression of DNA damage response genes, such as CDKN1A or DDB2. The increased formation of DNA adducts formed by BaP upon ß-catenin knockdown corresponded with enhanced production of major BaP metabolites, as well as with an increased expression/activity of CYP1 enzymes. Finally, using siRNA-mediated knockdown of CYP1A1, we confirmed that this enzyme plays a major role in formation of BaP-induced DNA adducts in HCT116 cells. Taken together, the present results indicated that the siRNA-mediated inhibition of ß-catenin signalling, which is aberrantly activated in a majority of colorectal cancers, modulated genotoxicity of dietary carcinogen BaP in colon cell model in vitro, via a mechanism involving up-regulation of CYP1 expression and activity.


Asunto(s)
Benzo(a)pireno/efectos adversos , Neoplasias del Colon/etiología , Neoplasias del Colon/patología , Citocromo P-450 CYP1A1/metabolismo , Aductos de ADN/efectos adversos , Daño del ADN , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , beta Catenina/antagonistas & inhibidores , Apoptosis , Western Blotting , Carcinógenos Ambientales/efectos adversos , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Citocromo P-450 CYP1A1/antagonistas & inhibidores , Citocromo P-450 CYP1A1/genética , Humanos , Técnicas para Inmunoenzimas , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , beta Catenina/genética , beta Catenina/metabolismo
20.
Sci Rep ; 14(1): 15521, 2024 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969679

RESUMEN

The aim of this study was to investigate the relationship between source-specific ambient particulate air pollution concentrations and the incidence of dementia. The study encompassed 70,057 participants from the Västerbotten intervention program cohort in Northern Sweden with a median age of 40 years at baseline. High-resolution dispersion models were employed to estimate source-specific particulate matter (PM) concentrations, such as PM10 and PM2.5 from traffic, exhaust, and biomass (mainly wood) burning, at the residential addresses of each participant. Cox regression models, adjusted for potential confounding factors, were used for the assessment. Over 884,847 person-years of follow-up, 409 incident dementia cases, identified through national registers, were observed. The study population's average exposure to annual mean total PM10 and PM2.5 lag 1-5 years was 9.50 µg/m3 and 5.61 µg/m3, respectively. Increased risks were identified for PM10-Traffic (35% [95% CI 0-82%]) and PM2.5-Exhaust (33% [95% CI - 2 to 79%]) in the second exposure tertile for lag 1-5 years, although no such risks were observed in the third tertile. Interestingly, a negative association was observed between PM2.5-Wood burning and the risk of dementia. In summary, this register-based study did not conclusively establish a strong association between air pollution exposure and the incidence of dementia. While some evidence indicated elevated risks for PM10-Traffic and PM2.5-Exhaust, and conversely, a negative association for PM2.5-Wood burning, no clear exposure-response relationships were evident.


Asunto(s)
Contaminación del Aire , Demencia , Exposición a Riesgos Ambientales , Material Particulado , Humanos , Suecia/epidemiología , Demencia/epidemiología , Demencia/etiología , Masculino , Femenino , Material Particulado/análisis , Material Particulado/efectos adversos , Incidencia , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Persona de Mediana Edad , Adulto , Exposición a Riesgos Ambientales/efectos adversos , Estudios de Cohortes , Anciano , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA