Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
New Phytol ; 241(3): 984-999, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38098153

RESUMEN

Plant hydraulics is crucial for assessing the plants' capacity to extract and transport water from the soil up to their aerial organs. Along with their capacity to exchange water between plant compartments and regulate evaporation, hydraulic properties determine plant water relations, water status and susceptibility to pathogen attacks. Consequently, any variation in the hydraulic characteristics of plants is likely to significantly impact various mechanisms and processes related to plant growth, survival and production, as well as the risk of biotic attacks and forest fire behaviour. However, the integration of hydraulic traits into disciplines such as plant pathology, entomology, fire ecology or agriculture can be significantly improved. This review examines how plant hydraulics can provide new insights into our understanding of these processes, including modelling processes of vegetation dynamics, illuminating numerous perspectives for assessing the consequences of climate change on forest and agronomic systems, and addressing unanswered questions across multiple areas of knowledge.


Asunto(s)
Cambio Climático , Ecosistema , Agua/fisiología , Suelo , Productos Agrícolas , Sequías
2.
Plant Cell Environ ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077899

RESUMEN

Hydraulic failure due to xylem embolism has been identified as one of the main mechanisms involved in drought-induced forest decline. Trees vulnerability to hydraulic failure depends on their hydraulic safety margin (HSM). While it has been shown that HSM globally converges between tree species and biomes, there is still limited knowledge regarding how HSM can adjust locally to varying drought conditions within species. In this study, we relied on three long-term partial rainfall exclusion experiments to investigate the plasticity of hydraulic traits and HSM for three Mediterranean tree species (Quercus ilex L., Quercus pubescens Willd., and Pinus halepensis Mill.). For all species, a homeostasis of HSM in response to rainfall reduction was found, achieved through different mechanisms. For Q. ilex, the convergence in HSM is attributed to the adjustment of both the turgor loss point (Ψtlp) and the water potential at which 50% of xylem conductivity is lost due to embolism (P50). In contrast, the maintenance of HSM for P. halepensis and Q. pubescens is related to its isohydric behavior for the first and leaf area adjustment for the latter. It remains to be seen whether this HSM homeostasis can be generalized and if it will be sufficient to withstand extreme droughts expected in the Mediterranean region.

3.
New Phytol ; 237(3): 793-806, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36305207

RESUMEN

Xylem hydraulic failure (HF) has been identified as a ubiquitous factor in triggering drought-induced tree mortality through the damage induced by the progressive dehydration of plant living cells. However, fundamental evidence of the mechanistic link connecting xylem HF to cell death has not been identified yet. The main aim of this study was to evaluate, at the leaf level, the relationship between loss of hydraulic function due to cavitation and cell death under drought conditions and discern how this relationship varied across species with contrasting resistances to cavitation. Drought was induced by withholding water from potted seedlings, and their leaves were sampled to measure their relative water content (RWC) and cell mortality. Vulnerability curves to cavitation at the leaf level were constructed for each species. An increment in cavitation events occurrence precedes the onset of cell mortality. A variation in cells tolerance to dehydration was observed along with the resistance to cavitation. Overall, our results indicate that the onset of cellular mortality occurs at lower RWC than the one for cavitation indicating the role of cavitation in triggering cellular death. They also evidenced a critical RWC for cellular death varying across species with different cavitation resistance.


Asunto(s)
Deshidratación , Agua , Deshidratación/metabolismo , Agua/metabolismo , Hojas de la Planta/fisiología , Xilema/fisiología , Sequías , Árboles/fisiología , Muerte Celular
4.
New Phytol ; 237(4): 1256-1269, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36366950

RESUMEN

Fuel moisture content (FMC) is a crucial driver of forest fires in many regions world-wide. Yet, the dynamics of FMC in forest canopies as well as their physiological and environmental determinants remain poorly understood, especially under extreme drought. We embedded a FMC module in the trait-based, plant-hydraulic SurEau-Ecos model to provide innovative process-based predictions of leaf live fuel moisture content (LFMC) and canopy fuel moisture content (CFMC) based on leaf water potential ( ψ Leaf ). SurEau-Ecos-FMC relies on pressure-volume (p-v) curves to simulate LFMC and vulnerability curves to cavitation to simulate foliage mortality. SurEau-Ecos-FMC accurately reproduced ψ Leaf and LFMC dynamics as well as the occurrence of foliage mortality in a Mediterranean Quercus ilex forest. Several traits related to water use (leaf area index, available soil water, and transpiration regulation), vulnerability to cavitation, and p-v curves (full turgor osmotic potential) had the greatest influence on LFMC and CFMC dynamics. As the climate gets drier, our results showed that drought-induced foliage mortality is expected to increase, thereby significantly decreasing CFMC. Our results represent an important advance in our capacity to understand and predict the sensitivity of forests to wildfires.


Asunto(s)
Sequías , Incendios Forestales , Bosques , Árboles/fisiología , Hojas de la Planta/fisiología , Agua/fisiología
5.
Plant Cell Environ ; 46(3): 764-779, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36517464

RESUMEN

The increase in frequency and intensity of drought events have hampered coffee production in the already threatened Amazon region, yet little is known about key aspects underlying the variability in yield potential across genotypes, nor to what extent higher productivity is linked to reduced drought tolerance. Here we explored how variations in morphoanatomical and physiological leaf traits can explain differences in yield and vulnerability to embolism in 11 Coffea canephora genotypes cultivated in the Western Amazon. The remarkable variation in coffee yield across genotypes was tightly related to differences in their carbon assimilation and water transport capacities, revealing a diffusive limitation to photosynthesis linked by hydraulic constraints. Although a clear trade-off between water transport efficiency and safety was not detected, all the studied genotypes operated in a narrow and/or negative hydraulic safety margin, suggesting a high vulnerability to leaf hydraulic failure (HF), especially on the most productive genotypes. Modelling exercises revealed that variations in HF across genotypes were mainly associated with differences in leaf water vapour leakage when stomata are closed, reflecting contrasting growth strategies. Overall, our results provide a new perspective on the challenges of sustaining coffee production in the Amazon region under a drier and warmer climate.


Asunto(s)
Coffea , Coffea/genética , Café , Hojas de la Planta/fisiología , Fenotipo , Fotosíntesis/fisiología , Sequías
6.
Physiol Plant ; 175(5): e14035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882305

RESUMEN

The main parameters determining photosynthesis are stomatal and mesophyll conductance and electron transport rate, and for hydraulic dynamics they are leaf hydraulic conductance and the spread of embolism. These parameters have scarcely been studied in desiccation-tolerant (resurrection) plants exposed to drought. Here, we characterized photosynthesis and hydraulics during desiccation and rehydration in a poikilochlorophyllous resurrection plant, Barbacenia purpurea (Velloziaceae). Gas exchange, chlorophyll fluorescence, and leaf water status were monitored along the whole dehydration-rehydration cycle. Simultaneously, embolism formation and hydraulic functioning recovery were measured at leaf level using micro-computed tomography imaging. Photosynthesis and leaf hydraulic conductance ceased at relatively high water potential (-1.28 and -1.54 MPa, respectively), whereas the onset of leaf embolism occurred after stomatal closure and photosynthesis cessation (<-1.61 MPa). This sequence of physiological processes during water stress may be associated with the need to delay dehydration, to prepare the molecular changes required in the desiccated state. Complete rehydration occurred rapidly in the mesophyll, whereas partial xylem refilling, and subsequent recovery of photosynthesis, occurred at later stages after rewatering. These results highlight the importance of stomata as safety valves to protect the vascular system from embolism, even in a plant able to fully recover after complete embolism.


Asunto(s)
Craterostigma , Embolia , Deshidratación , Microtomografía por Rayos X , Hojas de la Planta/fisiología , Fotosíntesis , Sequías , Estomas de Plantas/fisiología , Xilema/fisiología
7.
Plant Cell Environ ; 45(7): 1967-1984, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35394675

RESUMEN

Increasing temperature and drought can result in leaf dehydration and defoliation even in drought-adapted tree species such as the Mediterranean evergreen Quercus ilex L. The stomatal regulation of leaf water potential plays a central role in avoiding this phenomenon and is constrained by a suite of leaf traits including hydraulic conductance and vulnerability, hydraulic capacitance, minimum conductance to water vapour, osmotic potential and cell wall elasticity. We investigated whether the plasticity in these traits may improve leaf tolerance to drought in two long-term rainfall exclusion experiments in Mediterranean forests. Osmotic adjustment was observed to lower the water potential at turgor loss in the rainfall-exclusion treatments, thus suggesting a stomatal closure at more negative water potentials and a more anisohydric behaviour in drier conditions. Conversely, leaf hydraulic conductance and vulnerability did not exhibit any plasticity between treatments so the hydraulic safety margins were narrower in the rainfall-exclusion treatments. The sequence of leaf responses to seasonal drought and dehydration was conserved among treatments and sites but trees were more likely to suffer losses of turgor and hydraulic functioning in the rainfall-exclusion treatments. We conclude that leaf plasticity might help the trees to tolerate moderate drought but not to resist severe water stress.


Asunto(s)
Quercus , Aclimatación , Deshidratación , Sequías , Hojas de la Planta/fisiología , Quercus/fisiología , Árboles
8.
Plant Cell Environ ; 45(7): 2037-2061, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35394651

RESUMEN

Leaf water potential (ψleaf ), typically measured using the pressure chamber, is the most important metric of plant water status, providing high theoretical value and information content for multiple applications in quantifying critical physiological processes including drought responses. Pressure chamber measurements of ψleaf (ψleafPC ) are most typical, yet, the practical complexity of the technique and of the underlying theory has led to ambiguous understanding of the conditions to optimize measurements. Consequently, specific techniques and precautions diversified across the global research community, raising questions of reliability and repeatability. Here, we surveyed specific methods of ψleafPC from multiple laboratories, and synthesized experiments testing common assumptions and practices in ψleafPC for diverse species: (i) the need for equilibration of previously transpiring leaves; (ii) leaf storage before measurement; (iii) the equilibration of ψleaf for leaves on bagged branches of a range of dehydration; (iv) the equilibration of ψleaf across the lamina for bagged leaves, and the accuracy of measuring leaves with artificially 'elongated petioles'; (v) the need in ψleaf measurements for bagging leaves and high humidity within the chamber; (vi) the need to avoid liquid water on leaf surfaces; (vii) the use of 'pulse' pressurization versus gradual pressurization; and (viii) variation among experimenters in ψleafPC determination. Based on our findings we provide a best practice protocol to maximise accuracy, and provide recommendations for ongoing species-specific tests of important assumptions in future studies.


Asunto(s)
Hojas de la Planta , Agua , Sequías , Hojas de la Planta/fisiología , Reproducibilidad de los Resultados , Agua/fisiología
9.
New Phytol ; 229(3): 1415-1430, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32964437

RESUMEN

Plants continue to lose water from their leaves even after complete stomatal closure. Although this minimum conductance (gleaf-res ) has substantial impacts on strategies of water use and conservation, little is known about the potential drivers underlying the variability of this trait across species. We thus untangled the relative contribution of water leaks from the cuticle and stomata in order to investigate how the variability in leaf morphological and anatomical traits is related to the variation in gleaf-res and carbon assimilation capacity across 30 diverse species from the Brazilian Cerrado. In addition to cuticle permeance, water leaks from stomata had a significant impact on gleaf-res . The differential pattern of stomata distribution in the epidermis was a key factor driving this variation, suggesting the existence of a trade-off between carbon assimilation and water loss through gleaf-res . For instance, higher gleaf-res , observed in fast-growing species, was associated with the investment in small and numerous stomata, which allowed higher carbon assimilation rates but also increased water leaks, with negative impacts on leaf survival under drought. Variation in cuticle structural properties was not linked to gleaf-res . Our results therefore suggest the existence of a trade-off between carbon assimilation efficiency and dehydration tolerance at foliar level.


Asunto(s)
Pradera , Estomas de Plantas , Brasil , Hojas de la Planta , Transpiración de Plantas , Agua
10.
J Exp Bot ; 72(10): 3914-3928, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33718947

RESUMEN

Hydraulic failure has been extensively studied during drought-induced plant dieback, but its role in plant-pathogen interactions is under debate. During esca, a grapevine (Vitis vinifera) disease, symptomatic leaves are prone to irreversible hydraulic dysfunctions but little is known about the hydraulic integrity of perennial organs over the short- and long-term. We investigated the effects of esca on stem hydraulic integrity in naturally infected plants within a single season and across season(s). We coupled direct (ks) and indirect (kth) hydraulic conductivity measurements, and tylose and vascular pathogen detection with in vivo X-ray microtomography visualizations. Xylem occlusions (tyloses) and subsequent loss of stem hydraulic conductivity (ks) occurred in all shoots with severe symptoms (apoplexy) and in more than 60% of shoots with moderate symptoms (tiger-stripe), with no tyloses in asymptomatic shoots. In vivo stem observations demonstrated that tyloses occurred only when leaf symptoms appeared, and resulted in more than 50% loss of hydraulic conductance in 40% of symptomatic stems, unrelated to symptom age. The impact of esca on xylem integrity was only seasonal, with no long-term impact of disease history. Our study demonstrated how and to what extent a vascular disease such as esca, affecting xylem integrity, could amplify plant mortality through hydraulic failure.


Asunto(s)
Vitis , Agua , Hojas de la Planta , Tallos de la Planta , Estaciones del Año , Xilema
11.
Physiol Plant ; 172(1): 247-257, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33432594

RESUMEN

Global climatic models predict an increment in the frequency and intensity of drought events, which have important consequences on forest dieback. However, the mechanisms leading to tree mortality under drought conditions and the physiological thresholds for recovery are not totally understood yet. This study aimed to identify what are the key physiological traits that determine the tree capacity to recover from drought. Individuals of a conifer (Pseudotsuga menziesii M.) and an angiosperm (Prunus lusitanica L.) species were exposed to drought and their ability to recover after rehydration monitored. Results showed that the actual thresholds used for recovery from drought based on percentage loss of conductance (PLC) (i.e., 50% for conifers, 88% for angiosperms) do not provide accurate insights about the tree capacity for surviving extreme drought events. On the contrary, differences in stem relative water content (RWCStem ) and the level of electrolytes leakage (EL) were directly related to the capacity of the trees to recover from drought. This was the case for the conifer species, P. menziesii, for which higher RWCStem and lower EL values were related to the recovery capacity. Even if results showed a similar trend for the angiosperm P. lusitanica as for the conifers, differences between the two traits were much more subtle and did not allow an accurate differentiation between trees able to recover and those that were not. RWCStem and EL could work as indicators of tree capacity to recover from drought for conifers but more studies are required to confirm this observation for angiosperms.


Asunto(s)
Sequías , Magnoliopsida , Bosques , Árboles , Agua
12.
New Phytol ; 227(6): 1804-1817, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32386326

RESUMEN

Lycophytes are the earliest diverging extant lineage of vascular plants, sister to all other vascular plants. Given that most species are adapted to ever-wet environments, it has been hypothesized that lycophytes, and by extension the common ancestor of all vascular plants, have few adaptations to drought. We investigated the responses to drought of key fitness-related traits such as stomatal regulation, shoot hydraulic conductance (Kshoot ) and stem xylem embolism resistance in Selaginella haematodes and S. pulcherrima, both native to tropical understory. During drought stomata in both species were found to close before declines in Kshoot , with a 50% loss of Kshoot occurring at -1.7 and -2.5 MPa in S. haematodes and S. pulcherrima, respectively. Direct observational methods revealed that the xylem of both species was resistant to embolism formation, with 50% of embolized xylem area occurring at -3.0 and -4.6 MPa in S. haematodes and S. pulcherrima, respectively. X-ray microcomputed tomography images of stems revealed that the decline in Kshoot occurred with the formation of an air-filled lacuna, disconnecting the central vascular cylinder from the cortex. We propose that embolism-resistant xylem and large capacitance, provided by collapsing inner cortical cells, is essential for Selaginella survival during water deficit.


Asunto(s)
Embolia , Selaginellaceae , Sequías , Hojas de la Planta , Tallos de la Planta , Agua , Microtomografía por Rayos X , Xilema
13.
Plant Physiol ; 181(3): 1163-1174, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31455632

RESUMEN

Vascular pathogens cause disease in a large spectrum of perennial plants, with leaf scorch being one of the most conspicuous symptoms. Esca in grapevine (Vitis vinifera) is a vascular disease with huge negative effects on grape yield and the wine industry. One prominent hypothesis suggests that vascular disease leaf scorch is caused by fungal pathogen-derived elicitors and toxins. Another hypothesis suggests that leaf scorch is caused by hydraulic failure due to air embolism, the pathogen itself, and/or plant-derived tyloses and gels. In this study, we transplanted mature, naturally infected esca symptomatic vines from the field into pots, allowing us to explore xylem integrity in leaves (i.e. leaf midveins and petioles) using synchrotron-based in vivo x-ray microcomputed tomography and light microscopy. Our results demonstrated that symptomatic leaves are not associated with air embolism. In contrast, symptomatic leaves presented significantly more nonfunctional vessels resulting from the presence of nongaseous embolisms (i.e. tyloses and gels) than control leaves, but there was no significant correlation with disease severity. Using quantitative PCR, we determined that two vascular pathogen species associated with esca necrosis in the trunk were not found in leaves where occlusions were observed. Together, these results demonstrate that symptom development is associated with the disruption of vessel integrity and suggest that symptoms are elicited at a distance from the trunk where fungal infections occur. These findings open new perspectives on esca symptom expression where the hydraulic failure and elicitor/toxin hypotheses are not necessarily mutually exclusive.


Asunto(s)
Hojas de la Planta/metabolismo , Vitis/metabolismo , Microtomografía por Rayos X , Xilema/metabolismo
14.
Plant Cell Environ ; 43(6): 1584-1594, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32187686

RESUMEN

Xylem hydraulic failure is a major driver of tree death during drought. However, to better understand mortality risk in trees, especially during hot-drought events, more information is required on both rates of residual water-loss from small branches (gres ) after stomatal closure, as well as the phase transition temperature (Tp ), beyond which gres significantly increases. Here, we describe and test a novel low-cost tool, the DroughtBox, for phenotyping gres and Tp across species. The system consists of a programmable climatically controlled chamber in which branches dehydrate and changes in the mass recorded. Test measurements show that the DroughtBox maintains stable temperature and relative humidity across a range of set points, a prerequisite for getting accurate gres and Tp values. Among a study group of four conifer and one angiosperm species, we observed a range of gres (0.44-1.64 mmol H2 O m-2 s-1 ) and Tp (39.4-43.8°C) values. Furthermore, the measured time to hydraulic failure varied between two conifers species and was shortened in both species following a heatwave event. The DroughtBox is a reliable and customizable tool for phenotyping gres and Tp , as well as for testing models of time to hydraulic failure that will improve our ability to assess climate change impacts on plants.


Asunto(s)
Sequías , Magnoliopsida/fisiología , Temperatura , Agua/fisiología , Fenotipo , Hojas de la Planta/fisiología , Tallos de la Planta/fisiología , Factores de Tiempo , Xilema/fisiología
15.
Plant Cell Environ ; 43(4): 854-865, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31953855

RESUMEN

Identifying the drivers of stomatal closure and leaf damage during stress in grasses is a critical prerequisite for understanding crop resilience. Here, we investigated whether changes in stomatal conductance (gs ) during dehydration were associated with changes in leaf hydraulic conductance (Kleaf ), xylem cavitation, xylem collapse, and leaf cell turgor in wheat (Triticum aestivum). During soil dehydration, the decline of gs was concomitant with declining Kleaf under mild water stress. This early decline of leaf hydraulic conductance was not driven by cavitation, as the first cavitation events in leaf and stem were detected well after Kleaf had declined. Xylem vessel deformation could only account for <5% of the observed decline in leaf hydraulic conductance during dehydration. Thus, we concluded that changes in the hydraulic conductance of tissues outside the xylem were responsible for the majority of Kleaf decline during leaf dehydration in wheat. However, the contribution of leaf resistance to whole plant resistance was less than other tissues (<35% of whole plant resistance), and this proportion remained constant as plants dehydrated, indicating that Kleaf decline during water stress was not a major driver of stomatal closure.


Asunto(s)
Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Triticum/fisiología , Xilema/fisiología , Deshidratación , Tallos de la Planta/fisiología , Transpiración de Plantas/fisiología , Microtomografía por Rayos X
16.
Plant Cell Environ ; 43(3): 548-562, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31850535

RESUMEN

Climate change threatens food security, and plant science researchers have investigated methods of sustaining crop yield under drought. One approach has been to overproduce abscisic acid (ABA) to enhance water use efficiency. However, the concomitant effects of ABA overproduction on plant vascular system functioning are critical as it influences vulnerability to xylem hydraulic failure. We investigated these effects by comparing physiological and hydraulic responses to water deficit between a tomato (Solanum lycopersicum) wild type control (WT) and a transgenic line overproducing ABA (sp12). Under well-watered conditions, the sp12 line displayed similar growth rate and greater water use efficiency by operating at lower maximum stomatal conductance. X-ray microtomography revealed that sp12 was significantly more vulnerable to xylem embolism, resulting in a reduced hydraulic safety margin. We also observed a significant ontogenic effect on vulnerability to xylem embolism for both WT and sp12. This study demonstrates that the greater water use efficiency in the tomato ABA overproducing line is associated with higher vulnerability of the vascular system to embolism and a higher risk of hydraulic failure. Integrating hydraulic traits into breeding programmes represents a critical step for effectively managing a crop's ability to maintain hydraulic conductivity and productivity under water deficit.


Asunto(s)
Ácido Abscísico/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Agua/metabolismo , Simulación por Computador , Gases/metabolismo , Cinética , Modelos Lineales , Solanum lycopersicum/crecimiento & desarrollo , Tallos de la Planta/fisiología , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente , Microtomografía por Rayos X
17.
J Exp Bot ; 71(3): 1151-1159, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31641746

RESUMEN

Drought represents a major abiotic constraint to plant growth and survival. On the one hand, plants keep stomata open for efficient carbon assimilation while, on the other hand, they close them to prevent permanent hydraulic impairment from xylem embolism. The order of occurrence of these two processes (stomatal closure and the onset of leaf embolism) during plant dehydration has remained controversial, largely due to methodological limitations. However, the newly developed optical visualization method now allows concurrent monitoring of stomatal behaviour and leaf embolism formation in intact plants. We used this new approach directly by dehydrating intact saplings of three contrasting tree species and indirectly by conducting a literature survey across a greater range of plant taxa. Our results indicate that increasing water stress generates the onset of leaf embolism consistently after stomatal closure, and that the lag time between these processes (i.e. the safety margin) rises with increasing embolism resistance. This suggests that during water stress, embolism-mediated declines in leaf hydraulic conductivity are unlikely to act as a signal for stomatal down-regulation. Instead, these species converge towards a strategy of closing stomata early to prevent water loss and delay catastrophic xylem dysfunction.


Asunto(s)
Magnoliopsida/fisiología , Estomas de Plantas/fisiología , Agua/fisiología , Xilema/fisiología , Imagen Óptica/métodos
18.
Ann Bot ; 124(7): 1173-1184, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31227829

RESUMEN

BACKGROUND AND AIMS: Hydraulic studies are currently biased towards conifers and dicotyledonous angiosperms; responses of arborescent monocots to increasing temperature and drought remain poorly known. This study aims to assess xylem resistance to drought-induced embolism in palms. METHODS: We quantified embolism resistance via P50 (xylem pressure inducing 50 % embolism or loss of hydraulic conductivity) in petioles and leaflets of six palm species differing in habitat and phylogenetic relatedness using three techniques: in vivo X-ray-based microcomputed tomography, the in situ flow centrifuge technique and the optical vulnerability method. KEY RESULTS: Our results show that P50 of petioles varies greatly in the palm family, from -2.2 ± 0.4 MPa in Dypsis baronii to -5.8 ± 0.3 MPa in Rhapis excelsa (mean ± s.e.). No difference or weak differences were found between petioles and leaf blades within species. Surprisingly, where differences occurred, leaflets were less vulnerable to embolism than petioles. Embolism resistance was not correlated with conduit size (r = 0.37, P = 0.11). CONCLUSIONS: This study represents the first estimate of drought-induced xylem embolism in palms across biomes and provides the first step towards understanding hydraulic adaptations in long-lived arborescent monocots. It showed an almost 3-fold range of embolism resistance between palm species, as large as that reported in all angiosperms. We found little evidence for hydraulic segmentation between leaflets and petioles in palms, suggesting that when it happens, hydraulic segregation may lack a clear relationship with organ cost or replaceability.


Asunto(s)
Arecaceae , Embolia , Sequías , Humanos , Filogenia , Tallos de la Planta , Agua , Microtomografía por Rayos X , Xilema
19.
J Exp Bot ; 69(22): 5611-5623, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30184113

RESUMEN

According to the hydraulic vulnerability segmentation hypothesis, leaves are more vulnerable to decline of hydraulic conductivity than branches, but whether stem xylem is more embolism resistant than leaves remains unclear. Drought-induced embolism resistance of leaf xylem was investigated based on X-ray microcomputed tomography (microCT) for Betula pendula, Laurus nobilis, and Liriodendron tulipifera, excluding outside-xylem, and compared with hydraulic vulnerability curves for branch xylem. Moreover, bordered pit characters related to embolism resistance were investigated for both organs. Theoretical P50 values (i.e. the xylem pressure corresponding to 50% loss of hydraulic conductance) of leaves were generally within the same range as hydraulic P50 values of branches. P50 values of leaves were similar to branches for L. tulipifera (-2.01 versus -2.10 MPa, respectively), more negative for B. pendula (-2.87 versus -1.80 MPa), and less negative for L. nobilis (-6.4 versus -9.2 MPa). Despite more narrow conduits in leaves than branches, mean interconduit pit membrane thickness was similar in both organs, but significantly higher in leaves of B. pendula than in branches. This case study indicates that xylem shows a largely similar embolism resistance across leaves and branches, although differences both within and across organs may occur, suggesting interspecific variation with regard to the hydraulic vulnerability segmentation hypothesis.


Asunto(s)
Betula/anatomía & histología , Sequías , Laurus/anatomía & histología , Liriodendron/anatomía & histología , Árboles/anatomía & histología , Xilema/fisiología , Betula/fisiología , Laurus/fisiología , Liriodendron/fisiología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/citología , Hojas de la Planta/fisiología , Brotes de la Planta/anatomía & histología , Brotes de la Planta/citología , Brotes de la Planta/fisiología , Árboles/fisiología , Microtomografía por Rayos X
20.
For Ecol Manage ; 424: 53-61, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29910530

RESUMEN

The genus Quercus comprises important species in forestry not only for their productive value but also for their ability to withstand drought. Hence an evaluation of inter- and intraspecific variation in drought tolerance is important for selecting the best adapted species and provenances for future afforestation. The presence of long vessels makes it difficult to assess xylem vulnerability to embolism in oak. Thanks to the development of an in situ flow centrifuge equipped with a large rotor, we quantified (i) the between species variability of embolism resistance in four native and two exotic species of oaks in Europe and (ii) the within species variability in Quercus petraea. Embolism resistance varied significantly among species, with the pressure inducing 50% loss of hydraulic conductivity (P50 ) ranging between - 7.0 and -4.2 MPa. Species native to the Mediterranean region were more resistant than pan-European species. In contrast, intraspecific variability in embolism resistance in Q. petraea was low within provenances and null among provenances. A positive correlation between P50 and vessel diameter among the six oak species indicates that the more embolism resistant species had narrower xylem vessels. However, this tradeoff between hydraulic efficiency and safety was not observed between Q. petraea provenances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA