Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 195(11): 1265, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37783813

RESUMEN

Precipitation is the primary groundwater source for the Island of O'ahu, Hawai'i, USA, and is an important source of terrestrial nutrients. Since Pacific Islands are particularly vulnerable to the impacts of climate change, they are important venues for studying the controls on and fluctuations in precipitation chemistry. Spatial variations in some of the dissolved rainfall ions can also be of value as natural geochemical tracers in examining surface and groundwater flow. This study collected and chemically analyzed bulk precipitation from 20 sites across the Island of O'ahu approximately quarterly between April 2018 and August 2021. The new precipitation chemistry data were integrated with previously published precipitation data to characterize major ion composition and examine the atmospheric processes controlling inorganic ion deposition. Linear regression and multivariate analysis were used to quantify the relationships among major ions and to assess the impacts of various environmental and meteorological factors on precipitation chemistry. Ordinary kriging and inverse distance weighted interpolations were conducted to help visualize spatial variations in major ion deposition. The results clearly indicate that ocean sea spray is the primary driver of precipitation inorganic chemistry, with marine sea salt aerosols accounting for more than 90% of the measured ion load. However, they also show that various weather patterns and nutrient sources impact inorganic deposition. Most notably, upper atmospheric transport of Asian continental dust during Hawaiian wet seasons, Ca2+ from local sedimentary deposits, and anthropogenic K+ from agricultural activity appear to be substantial non-marine deposition sources. This study synthesizes data from multiple sources into the most spatially and topographically diverse precipitation collector network on O'ahu to date. The findings from this effort help establish a baseline for assessing future fluctuations in inorganic ion deposition and lay important groundwork for examining connections between precipitation and groundwater chemistry within the study area.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Hawaii , Estaciones del Año , Tiempo (Meteorología)
2.
Geophys Res Lett ; 43(2): 874-883, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-27134320

RESUMEN

The role of surface heat fluxes underneath cold pools is investigated using cloud-resolving simulations with either interactive or horizontally homogenous surface heat fluxes over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive heat fluxes induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass flux and lateral entrainment are modified. Over the land surface, the heat fluxes underneath cold pools drastically impact the cold pool characteristics with more numerous and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive fluxes also modify the updraft mass flux and reduce convective organization. These results emphasize the importance of interactive surface fluxes instead of prescribed flux boundary conditions, as well as the formulation of surface heat fluxes, when studying convection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA