Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38037235

RESUMEN

OBJECTIVE: The performances of popular genome-wide association study (GWAS) models have not been examined yet in a consistent manner under the scenario of genetic admixture, which introduces several challenging aspects: heterogeneity of minor allele frequency (MAF), wide spectrum of case-control ratio, varying effect sizes, etc. METHODS: We generated a cohort of synthetic individuals (N = 19 234) that simulates (i) a large sample size; (ii) two-way admixture (Native American and European ancestry) and (iii) a binary phenotype. We then benchmarked three popular GWAS tools [generalized linear mixed model associated test (GMMAT), scalable and accurate implementation of generalized mixed model (SAIGE) and Tractor] by computing inflation factors and power calculations under different MAFs, case-control ratios, sample sizes and varying ancestry proportions. We also employed a cohort of Peruvians (N = 249) to further examine the performances of the testing models on (i) real genetic and phenotype data and (ii) small sample sizes. RESULTS: In the synthetic cohort, SAIGE performed better than GMMAT and Tractor in terms of type-I error rate, especially under severe unbalanced case-control ratio. On the contrary, power analysis identified Tractor as the best method to pinpoint ancestry-specific causal variants but showed decreased power when the effect size displayed limited heterogeneity between ancestries. In the Peruvian cohort, only Tractor identified two suggestive loci (P-value $\le 1\ast{10}^{-5}$) associated with Native American ancestry. DISCUSSION: The current study illustrates best practice and limitations for available GWAS tools under the scenario of genetic admixture. Incorporating local ancestry in GWAS analyses boosts power, although careful consideration of complex scenarios (small sample sizes, imbalance case-control ratio, MAF heterogeneity) is needed.


Asunto(s)
Benchmarking , Estudio de Asociación del Genoma Completo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Frecuencia de los Genes , Fenotipo , Tamaño de la Muestra , Polimorfismo de Nucleótido Simple
2.
Neurobiol Dis ; 176: 105938, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462719

RESUMEN

Identifying ancestry-specific molecular profiles of late-onset Alzheimer's Disease (LOAD) in brain tissue is crucial to understand novel mechanisms and develop effective interventions in non-European, high-risk populations. We performed gene differential expression (DE) and consensus network-based analyses in RNA-sequencing data of postmortem brain tissue from 39 Caribbean Hispanics (CH). To identify ancestry-concordant and -discordant expression profiles, we compared our results to those from two independent non-Hispanic White (NHW) samples (n = 731). In CH, we identified 2802 significant DE genes, including several LOAD known-loci. DE effects were highly concordant across ethnicities, with 373 genes transcriptome-wide significant in all three cohorts. Cross-ancestry meta-analysis found NPNT to be the top DE gene. We replicated over 82% of meta-analyses genome-wide signals in single-nucleus RNA-seq data (including NPNT and LOAD known-genes SORL1, FBXL7, CLU, ABCA7). Increasing representation in genetic studies will allow for deeper understanding of ancestry-specific mechanisms and improving precision treatment options in understudied groups.


Asunto(s)
Enfermedad de Alzheimer , Transcriptoma , Humanos , Enfermedad de Alzheimer/genética , Pueblos Caribeños , Etnicidad , Encéfalo , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/genética
3.
Mol Psychiatry ; 27(6): 2813-2820, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35365809

RESUMEN

Late-onset Alzheimer's disease (LOAD) is significantly more frequent in Hispanics than in non-Hispanic Whites. Ancestry may explain these differences across ethnic groups. To this end, we studied a large cohort of Caribbean Hispanics (CH, N = 8813) and tested the association between Local Ancestry (LA) and LOAD ("admixture mapping") to identify LOAD-associated ancestral blocks, separately for ancestral components (European [EUR], African [AFR], Native American[NA]) and jointly (AFR + NA). Ancestral blocks significant after permutation were fine-mapped employing multi-ethnic whole-exome sequencing (WES) to identify rare variants associated with LOAD (SKAT-O) and replicated in the UK Biobank WES dataset. Candidate genes were validated studying (A) protein expression in human LOAD and control brains; (B) two animal AD models, Drosophila and Zebrafish. In the joint AFR + NA model, we identified four significant ancestral blocks located on chromosomes 1 (p value = 8.94E-05), 6 (p value = 8.63E-05), 21 (p value = 4.64E-05) and 22 (p value = 1.77E-05). Fine-mapping prioritized the GCAT gene on chromosome 22 (SKAT-O p value = 3.45E-05) and replicated in the UK Biobank (SKAT-O p value = 0.05). In LOAD brains, a decrease of 28% in GCAT protein expression was observed (p value = 0.038), and GCAT knockdown in Amyloid-ß42 Drosophila exacerbated rough eye phenotype (68% increase, p value = 4.84E-09). In zebrafish, gcat expression increased after acute amyloidosis (34%, p value = 0.0049), and decreased upon anti-inflammatory Interleukin-4 (39%, p value = 2.3E-05). Admixture mapping uncovered genomic regions harboring new LOAD-associated loci that might explain the observed different frequency of LOAD across ethnic groups. Our results suggest that the inflammation-related activity of GCAT is a response to amyloid toxicity, and reduced GCAT expression exacerbates AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Etnicidad , Enfermedad de Alzheimer/genética , Animales , Región del Caribe , Drosophila , Humanos , Polimorfismo de Nucleótido Simple/genética , Pez Cebra
4.
Alzheimers Dement ; 19(6): 2538-2548, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36539198

RESUMEN

BACKGROUND: This study used admixture mapping to prioritize the genetic regions associated with Alzheimer's disease (AD) in African American (AA) individuals, followed by ancestry-aware regression analysis to fine-map the prioritized regions. METHODS: We analyzed 10,271 individuals from 17 different AA datasets. We performed admixture mapping and meta-analyzed the results. We then used regression analysis, adjusting for local ancestry main effects and interactions with genotype, to refine the regions identified from admixture mapping. Finally, we leveraged in silico annotation and differential gene expression data to prioritize AD-related variants and genes. RESULTS: Admixture mapping identified two genome-wide significant loci on chromosomes 17p13.2 (p = 2.2 × 10-5 ) and 18q21.33 (p = 1.2 × 10-5 ). Our fine mapping of the chromosome 17p13.2 and 18q21.33 regions revealed several interesting genes such as the MINK1, KIF1C, and BCL2. DISCUSSION: Our ancestry-aware regression approach showed that AA individuals have a lower risk of AD if they inherited African ancestry admixture block at the 17p13.2 locus. HIGHLIGHTS: We identified two genome-wide significant admixture mapping signals: on chromosomes 17p13.2 and 18q21.33, which are novel in African American (AA) populations. Our ancestry-aware regression approach showed that AA individuals have a lower risk of Alzheimer's disease (AD) if they inherited African ancestry admixture block at the 17p13.2 locus. We found that the overall proportion of African ancestry does not differ between the cases and controls that suggest African genetic ancestry alone is not likely to explain the AD prevalence difference between AA and non-Hispanic White populations.


Asunto(s)
Enfermedad de Alzheimer , Predisposición Genética a la Enfermedad , Humanos , Predisposición Genética a la Enfermedad/genética , Negro o Afroamericano/genética , Enfermedad de Alzheimer/genética , Mapeo Cromosómico/métodos , Genotipo , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Cinesinas/genética , Proteínas Serina-Treonina Quinasas/genética
5.
Ann Neurol ; 90(3): 366-376, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34038570

RESUMEN

OBJECTIVE: Polygenic risk scores (PRSs) assess the individual genetic propensity to a condition by combining sparse information scattered across genetic loci, often displaying small effect sizes. Most PRSs are constructed in European-ancestry populations, limiting their use in other ethnicities. Here we constructed and validated a PRS for late-onset Alzheimer's Disease (LOAD) in Caribbean Hispanics (CH). METHODS: We used a CH discovery (n = 4,312) and independent validation sample (n = 1,850) to construct an ancestry-specific PRS ("CH-PRS") and evaluated its performance alone and with other predictors using the area under curve (AUC) and logistic regression (strength of association with LOAD and statistical significance). We tested if CH-PRS predicted conversion to LOAD in a subsample with longitudinal data (n = 1,239). We also tested the CH-PRS in an independent replication CH cohort (n = 200) and brain autopsy cohort (n = 33). Finally, we tested the effect of ancestry on PRS by using European and African American discovery cohorts to construct alternative PRSs ("EUR-PRS", "AA-PRS"). RESULTS: The full model (LOAD ~ CH-PRS + sex + age + APOE-ɛ4), achieved an AUC = 74% (ORCH-PRS  = 1.51 95%CI = 1.36-1.68), raising to >75% in APOE-ɛ4 non-carriers. CH-PRS alone achieved an AUC = 72% in the autopsy cohort, raising to AUC = 83% in full model. Higher CH-PRS was significantly associated with clinical LOAD in the replication CH cohort (OR = 1.61, 95%CI = 1.19-2.17) and significantly predicted conversion to LOAD (HR = 1.93, CI = 1.70-2.20) in the longitudinal subsample. EUR-PRS and AA-PRS reached lower prediction accuracy (AUC = 58% and 53%, respectively). INTERPRETATION: Enriching diversity in genetic studies is critical to provide an effective PRS in profiling LOAD risk across populations. ANN NEUROL 2021;90:366-376.


Asunto(s)
Enfermedad de Alzheimer/etnología , Enfermedad de Alzheimer/genética , Predisposición Genética a la Enfermedad/etnología , Predisposición Genética a la Enfermedad/genética , Hispánicos o Latinos/genética , Herencia Multifactorial/genética , Anciano , Anciano de 80 o más Años , Región del Caribe/etnología , Estudios de Cohortes , Bases de Datos Genéticas , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
6.
Acta Neuropathol ; 144(1): 59-79, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35608697

RESUMEN

Alzheimer's disease (AD) has been associated with cardiovascular and cerebrovascular risk factors (CVRFs) during middle age and later and is frequently accompanied by cerebrovascular pathology at death. An interaction between CVRFs and genetic variants might explain the pathogenesis. Genome-wide, gene by CVRF interaction analyses for AD, in 6568 patients and 8101 controls identified FMNL2 (p = 6.6 × 10-7). A significant increase in FMNL2 expression was observed in the brains of patients with brain infarcts and AD pathology and was associated with amyloid and phosphorylated tau deposition. FMNL2 was also prominent in astroglia in AD among those with cerebrovascular pathology. Amyloid toxicity in zebrafish increased fmnl2a expression in astroglia with detachment of astroglial end feet from blood vessels. Knockdown of fmnl2a prevented gliovascular remodeling, reduced microglial activity and enhanced amyloidosis. APP/PS1dE9 AD mice also displayed increased Fmnl2 expression and reduced the gliovascular contacts independent of the gliotic response. Based on this work, we propose that FMNL2 regulates pathology-dependent plasticity of the blood-brain-barrier by controlling gliovascular interactions and stimulating the clearance of extracellular aggregates. Therefore, in AD cerebrovascular risk factors promote cerebrovascular pathology which in turn, interacts with FMNL2 altering the normal astroglial-vascular mechanisms underlying the clearance of amyloid and tau increasing their deposition in brain.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidosis/complicaciones , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Forminas , Humanos , Ratones , Ratones Transgénicos , Factores de Riesgo , Pez Cebra/metabolismo
7.
J Int Neuropsychol Soc ; 28(4): 351-361, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34376262

RESUMEN

OBJECTIVE: To estimate the prevalence of mild cognitive impairment (MCI) and its subtypes and investigate the impact of midlife cardiovascular risk factors on late-life MCI among the aging Mexican population. METHOD: Analyses included a sample of non-demented adults over the age of 55 living in both urban and rural areas of Mexico (N = 1807). MCI diagnosis was assigned based on a comprehensive cognitive assessment assessing the domains of memory, executive functioning, language, and visuospatial ability. The normative sample was selected by means of the robust norms approach. Cognitive impairment was defined by a 1.5-SD cut-off per cognitive domain using normative corrections for age, years of education, and sex. Risk factors included age, education, sex, rurality, depression, insurance status, workforce status, hypertension, diabetes, stroke, and heart disease. RESULTS: The prevalence of amnestic MCI was 5.9%. Other MCI subtypes ranged from 4.2% to 7.7%. MCI with and without memory impairment was associated with older age (OR = 1.01 [1.01, 1.05]; OR = 1.03 [1.01, 1.04], respectively) and residing in rural areas (OR = 1.49 [1.08, 2.06]; OR = 1.35 [1.03, 1.77], respectively). Depression (OR = 1.07 [1.02, 1.12]), diabetes (OR = 1.37 [1.03, 1.82]), and years of education (OR = 0.94 [0.91, 0.97]) were associated with MCI without memory impairment. Midlife CVD increased the odds of MCI in late-life (OR = 1.76 [1.19, 2.59], which was driven by both midlife hypertension and diabetes (OR = 1.70 [1.18, 2.44]; OR = 1.88 [1.19, 2.97], respectively). CONCLUSIONS: Older age, depression, low education, rurality, and midlife hypertension and diabetes were associated with higher risk of late-life MCI among older adults in Mexico. Our findings suggest that the causes of cognitive impairment are multifactorial and vary by MCI subtype.


Asunto(s)
Disfunción Cognitiva , Hipertensión , Anciano , Disfunción Cognitiva/etiología , Humanos , Hipertensión/complicaciones , Hipertensión/epidemiología , Trastornos de la Memoria , México/epidemiología , Pruebas Neuropsicológicas , Prevalencia , Factores de Riesgo
8.
Alzheimers Dement ; 17(10): 1663-1674, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34002480

RESUMEN

INTRODUCTION: There is increasing interest in plasma amyloid beta (Aß) as an endophenotype of Alzheimer's disease (AD). Identifying the genetic determinants of plasma Aß levels may elucidate important biological processes that determine plasma Aß measures. METHODS: We included 12,369 non-demented participants from eight population-based studies. Imputed genetic data and measured plasma Aß1-40, Aß1-42 levels and Aß1-42/Aß1-40 ratio were used to perform genome-wide association studies, and gene-based and pathway analyses. Significant variants and genes were followed up for their association with brain positron emission tomography Aß deposition and AD risk. RESULTS: Single-variant analysis identified associations with apolipoprotein E (APOE) for Aß1-42 and Aß1-42/Aß1-40 ratio, and BACE1 for Aß1-40. Gene-based analysis of Aß1-40 additionally identified associations for APP, PSEN2, CCK, and ZNF397. There was suggestive evidence for interaction between a BACE1 variant and APOE ε4 on brain Aß deposition. DISCUSSION: Identification of variants near/in known major Aß-processing genes strengthens the relevance of plasma-Aß levels as an endophenotype of AD.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Amiloide , Apolipoproteínas E/genética , Ácido Aspártico Endopeptidasas/genética , Estudio de Asociación del Genoma Completo , Voluntarios Sanos , Presenilina-2/genética , Enfermedad de Alzheimer/genética , Amiloide/sangre , Amiloide/metabolismo , Encéfalo/metabolismo , Humanos , Tomografía de Emisión de Positrones
9.
Brain ; 142(11): 3375-3381, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31580390

RESUMEN

Age at onset of Alzheimer's disease is highly variable, and its modifiers (genetic or environmental) could act through epigenetic changes, such as DNA methylation at CpG sites. DNA methylation is also linked to ageing-the strongest Alzheimer's disease risk factor. DNA methylation age can be calculated using age-related CpGs and might reflect biological ageing. We conducted a clinical, genetic and epigenetic investigation of a unique Ashkenazi Jewish family with monozygotic triplets, two of whom developed Alzheimer's disease at ages 73 and 76, while the third at age 85 has no cognitive complaints or deficits in daily activities. One of their offspring developed Alzheimer's disease at age 50. Targeted sequencing of 80 genes associated with neurodegeneration revealed that the triplets and the affected offspring are heterozygous carriers of the risk APOE ε4 allele, as well as rare substitutions in APP (p.S198P), NOTCH3 (p.H1235L) and SORL1 (p.W1563C). In addition, we catalogued 52 possibly damaging rare variants detected by NeuroX array in affected individuals. Analysis of family members on a genome-wide DNA methylation chip revealed that the DNA methylation age of the triplets was 6-10 years younger than chronological age, while it was 9 years older in the offspring with early-onset Alzheimer's disease, suggesting accelerated ageing.


Asunto(s)
Enfermedad de Alzheimer/genética , Epigénesis Genética/genética , Trillizos/genética , Edad de Inicio , Anciano , Anciano de 80 o más Años , Envejecimiento Prematuro/genética , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Apolipoproteínas E/genética , ADN/genética , Metilación de ADN , Femenino , Variación Genética , Genotipo , Heterocigoto , Humanos , Judíos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/patología , Linaje , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X
10.
Genet Epidemiol ; 42(6): 500-515, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29862559

RESUMEN

Multipoint linkage analysis is an important approach for localizing disease-associated loci in pedigrees. Linkage analysis, however, is sensitive to misspecification of marker allele frequencies. Pedigrees from recently admixed populations are particularly susceptible to this problem because of the challenge of accurately accounting for population structure. Therefore, increasing emphasis on use of multiethnic samples in genetic studies requires reevaluation of best practices, given data currently available. Typical strategies have been to compute allele frequencies from the sample, or to use marker allele frequencies determined by admixture proportions averaged over the entire sample. However, admixture proportions vary among pedigrees and throughout the genome in a family-specific manner. Here, we evaluate several approaches to model admixture in linkage analysis, providing different levels of detail about ancestral origin. To perform our evaluations, for specification of marker allele frequencies, we used data on 67 Caribbean Hispanic admixed families from the Alzheimer's Disease Sequencing Project. Our results show that choice of admixture model has an effect on the linkage analysis results. Variant-specific admixture proportions, computed for individual families, provide the most detailed regional admixture estimates, and, as such, are the most appropriate allele frequencies for linkage analysis. This likely decreases the number of false-positive results, and is straightforward to implement.


Asunto(s)
Enfermedad de Alzheimer/genética , Pool de Genes , Hispánicos o Latinos/genética , Linaje , Filogenia , Análisis de Secuencia de ADN , Región del Caribe , Etnicidad , Familia , Femenino , Frecuencia de los Genes/genética , Ligamiento Genético , Genética de Población , Humanos , Escala de Lod , Masculino , Modelos Genéticos , Análisis de Componente Principal
11.
Alzheimers Dement ; 14(2): 205-214, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28943286

RESUMEN

OBJECTIVE: To determine whether the extent of overlap of the genetic architecture among the sporadic late-onset Alzheimer's Disease (sLOAD), familial late-onset AD (fLOAD), sporadic early-onset AD (sEOAD), and autosomal dominant early-onset AD (eADAD). METHODS: Polygenic risk scores (PRSs) were constructed using previously identified 21 genome-wide significant loci for LOAD risk. RESULTS: We found that there is an overlap in the genetic architecture among sEOAD, fLOAD, and sLOAD. The highest association of the PRS and risk (odds ratio [OR] = 2.27; P = 1.29 × 10-7) was observed in sEOAD, followed by fLOAD (OR = 1.75; P = 1.12 × 10-7) and sLOAD (OR = 1.40; P = 1.21 × 10-3). The PRS was associated with cerebrospinal fluid ptau181-Aß42 on eADAD (P = 4.36 × 10-2). CONCLUSION: Our analysis confirms that the genetic factors identified for LOAD modulate risk in sLOAD and fLOAD and also sEOAD cohorts. Specifically, our results suggest that the burden of these risk variants is associated with familial clustering and earlier onset of AD. Although these variants are not associated with risk in the eADAD, they may be modulating age at onset.


Asunto(s)
Enfermedad de Alzheimer/clasificación , Enfermedad de Alzheimer/genética , Salud de la Familia , Predisposición Genética a la Enfermedad/genética , Herencia Multifactorial/genética , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Apolipoproteínas E/genética , Estudios de Cohortes , Bases de Datos Bibliográficas/estadística & datos numéricos , Femenino , Genotipo , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Mutación/genética , Fragmentos de Péptidos/líquido cefalorraquídeo , Curva ROC , Proteínas tau/líquido cefalorraquídeo
12.
Ann Neurol ; 79(6): 929-39, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27016429

RESUMEN

OBJECTIVE: White matter hyperintensities (WMHs) are areas of increased signal on T2-weighted magnetic resonance imaging (MRI) scans that most commonly reflect small vessel cerebrovascular disease. Increased WMH volume is associated with risk and progression of Alzheimer's disease (AD). These observations are typically interpreted as evidence that vascular abnormalities play an additive, independent role contributing to symptom presentation, but not core features of AD. We examined the severity and distribution of WMH in presymptomatic PSEN1, PSEN2, and APP mutation carriers to determine the extent to which WMH manifest in individuals genetically determined to develop AD. METHODS: The study comprised participants (n = 299; age = 39.03 ± 10.13) from the Dominantly Inherited Alzheimer Network, including 184 (61.5%) with a mutation that results in AD and 115 (38.5%) first-degree relatives who were noncarrier controls. We calculated the estimated years from expected symptom onset (EYO) by subtracting the affected parent's symptom onset age from the participant's age. Baseline MRI data were analyzed for total and regional WMH. Mixed-effects piece-wise linear regression was used to examine WMH differences between carriers and noncarriers with respect to EYO. RESULTS: Mutation carriers had greater total WMH volumes, which appeared to increase approximately 6 years before expected symptom onset. Effects were most prominent for the parietal and occipital lobe, which showed divergent effects as early as 22 years before estimated onset. INTERPRETATION: Autosomal-dominant AD is associated with increased WMH well before expected symptom onset. The findings suggest the possibility that WMHs are a core feature of AD, a potential therapeutic target, and a factor that should be integrated into pathogenic models of the disease. Ann Neurol 2016;79:929-939.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo , Sustancia Blanca/patología , Proteínas tau/líquido cefalorraquídeo , Adulto , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Biomarcadores , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad/genética , Heterocigoto , Humanos , Imagen por Resonancia Magnética , Masculino , Neuroimagen , Presenilina-1/genética , Presenilina-2/genética , Adulto Joven
13.
Curr Neurol Neurosci Rep ; 17(10): 78, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28825204

RESUMEN

PURPOSE OF REVIEW: We aimed to summarize the recent advances in genetic findings of Alzheimer's disease (AD), focusing on traditional single-marker and gene approaches and non-traditional ones, i.e., polygenic and epistatic components. RECENT FINDINGS: Genetic studies have progressed over the last few decades from linkage to genome-wide association studies (GWAS), and most recently studies utilizing high-throughput sequencing. So far, GWASs have identified several common variants characterized by small effect sizes (besides APOE-ε4). Sequencing has facilitated the study of rare variants with larger effects. Nevertheless, missing heritability for AD remains extensive; a possible explanation might lie in the existence of polygenic and epistatic components. We review findings achieved by single-marker approaches, but also polygenic and epistatic associations. The latter two are critical, yet-underexplored mechanisms. Genes involved in complex diseases are likely regulated by mechanisms and pathways involving many other genes, an aspect potentially missed by traditional approaches.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Epistasis Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Enfermedad de Alzheimer/terapia , Marcadores Genéticos/genética , Predisposición Genética a la Enfermedad/epidemiología , Predisposición Genética a la Enfermedad/genética , Humanos , Polimorfismo de Nucleótido Simple/genética
14.
Mol Cell Probes ; 30(6): 397-403, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27618776

RESUMEN

Late-onset Alzheimer's disease (AD), the most common neurodegenerative disorder in western countries, is clinically defined by progressive worsening in cognitive functions along with function and behavioral impairment. This ultimately results in complete incapacity and death. AD is a clinically and pathologically heterogeneous disease, and this is reflected by the numerous genetic findings that point to several diverse molecular mechanisms and pathways. Linkage, genome-wide association and next-generation sequencing studies have led to the identification of more than 20 novel susceptibility loci for AD. While these observations have significantly increased the knowledge of pathogenic mechanisms and potential therapeutic targets, a large part of the genetic component underlying AD is still unexplained. This review will summarize and discuss the major genetic findings and their potential impact on AD diagnosis and prediction of prognosis.


Asunto(s)
Enfermedad de Alzheimer/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Enfermedad de Alzheimer/diagnóstico , Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación
15.
Alzheimers Dement ; 11(12): 1510-1519, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26079417

RESUMEN

INTRODUCTION: It is unclear whether white matter hyperintensities (WMHs), magnetic resonance imaging markers of small-vessel cerebrovascular disease, promote neurodegeneration and associated clinical decline in Alzheimer's disease (AD), or simply co-occur with recognized pathogenic processes. METHODS: In 169 patients with mild cognitive impairment, followed for 3 years, we examined the association of (1) baseline regional WMH and cerebral spinal fluid-derived t-tau (total tau) with entorhinal cortex atrophy rates, as a marker of AD-related neurodegeneration, and conversion to AD; and (2) baseline regional WMH with change in t-tau level. RESULTS: In participants with low baseline t-tau, higher regional WMH volumes were associated with faster entorhinal cortex atrophy. Higher parietal WMH volume predicted conversion to AD in those with high t-tau. Higher parietal and occipital WMH volumes predicted increasing t-tau. DISCUSSION: WMHs affect AD clinical and pathologic processes both directly and interacting with tau.


Asunto(s)
Disfunción Cognitiva/patología , Sustancia Blanca/patología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Atrofia , Progresión de la Enfermedad , Corteza Entorrinal/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Fibras Nerviosas Mielínicas/patología , Fragmentos de Péptidos/metabolismo , Sustancia Blanca/metabolismo , Proteínas tau/metabolismo
16.
Micromachines (Basel) ; 15(7)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39064382

RESUMEN

This paper investigates the threshold voltage shift (ΔVTH) induced by positive bias temperature instability (PBTI) in silicon carbide (SiC) power MOSFETs. By analyzing ΔVTH under various gate stress voltages (VGstress) at 150 °C, distinct mechanisms are revealed: (i) trapping in the interface and/or border pre-existing defects and (ii) the creation of oxide defects and/or trapping in spatially deeper oxide states with an activation energy of ~80 meV. Notably, the adoption of different characterization methods highlights the distinct roles of these mechanisms. Moreover, the study demonstrates consistent behavior in permanent ΔVTH degradation across VGstress levels using a power law model. Overall, these findings deepen the understanding of PBTI in SiC MOSFETs, providing insights for reliability optimization.

17.
medRxiv ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39108532

RESUMEN

We developed an imputation panel for Alzheimer's disease (AD) and related dementias (ADRD) using whole-genome sequencing (WGS) data from the Alzheimer's Disease Sequencing Project (ADSP). Recognizing the significant associations between structural variants (SVs) and AD, and their underrepresentation in existing public reference panels, our panel uniquely integrates single nucleotide variants (SNVs), short insertions and deletions (indels), and SVs. This panel enhances the imputation of disease susceptibility, including rare AD-associated SNVs, indels, and SVs, onto genotype array data, offering a cost-effective alternative to whole-genome sequencing while significantly augmenting statistical power. Notably, we discovered 10 rare indels nominal significant related to AD that are absent in the TOPMed-r2 panel and identified three suggestive significant (p-value < 1E-05) AD-associated SVs in the genes EXOC3L2 and DMPK, were identified. These findings provide new insights into AD genetics and underscore the critical role of imputation panels in advancing our understanding of complex diseases like ADRD.

18.
medRxiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633769

RESUMEN

Ancestrally admixed populations are underrepresented in genetic studies of complex diseases, which are still dominated by European-descent populations. This is relevant not only from a representation standpoint but also because of admixed populations' unique features, including being enriched for rare variants, for which effect sizes are disproportionately larger than common polymorphisms. Furthermore, results from these populations may be generalizable to other populations. The South African Cape Coloured (SACC) population is genetically admixed, with one of the highest prevalences of fetal alcohol spectrum disorders (FASD) worldwide. We profiled its admixture and examined associations between ancestry profiles and FASD outcomes using two longitudinal birth cohorts ( N =308 mothers, 280 children) designed to examine effects of prenatal alcohol exposure on development. Participants were genotyped via MEGA-ex array to capture common and rare variants. Rare variants were overrepresented in our SACC cohorts, with numerous polymorphisms being monomorphic in other reference populations (e.g., ∼30,000 and ∼221,000 variants in gnomAD European and Asian populations, respectively). The cohorts showed global African (51%; Bantu and San); European (26%; Northern/Western); South Asian (18%); and East Asian (5%; largely Southern regions) ancestries. The cohorts exhibited high rates of homozygosity (6%), with regions of homozygosity harboring more deleterious variants when lying within African local-ancestry genomic segments. Both maternal and child ancestry profiles were associated with FASD risk and altered severity of prenatal alcohol exposure-related cognitive deficits in the child. Our findings indicate that the SACC population may be a valuable asset to identify novel disease-associated genetic loci for FASD and other diseases.

19.
medRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405911

RESUMEN

Background: Both genetic variants and epigenetic features contribute to the risk of Alzheimer's disease (AD). We studied the AD association of CpG-related single nucleotide polymorphisms (CGS), which act as the hub of both the genetic and epigenetic effects, in Hispanics decedents and generalized the findings to Non-Hispanic Whites (NHW) decedents. Methods: First, we derived the dosage of the CpG site-creating allele of multiple CGSes in each 1 KB window across the genome and we conducted a sliding window association test with clinical diagnosis of AD in 7,155 Hispanics (3,194 cases and 3,961 controls) using generalized linear mixed models with the adjustment of age, sex, population structure, genomic relationship matrix, and genotyping batches. Next, using methylation and bulk RNA-sequencing data from the dorsolateral pre-frontal cortex in 150 Hispanics brains, we tested the cis- and trans-effects of AD associated CGS on brain DNA methylation to mRNA expression. For the genes with significant cis- and trans-effects, we checked their enriched pathways. Results: We identified six genetic loci in Hispanics with CGS dosage associated with AD at genome-wide significance levels: ADAM20 (Score=55.2, P= 4.06×10 -8 ), between VRTN (Score=-19.6, P= 1.47×10 -8 ) and SYNDIG1L (Score=-37.7, P= 2.25×10 -9 ), SPG7 (16q24.3) (Score=40.5, P= 2.23×10 -8 ), PVRL2 (Score=125.86, P= 1.64×10 -9 ), TOMM40 (Score=-18.58, P= 4.61×10 -8 ), and APOE (Score=75.12, P= 7.26×10 -26 ). CGSes in PVRL2 and APOE were also genome-wide significant in NHW. Except for ADAM20 , CGSes in all the other five loci were associated with Hispanic brain methylation levels (mQTLs) and CGSes in SPG7, PVRL2, and APOE were also mQTLs in NHW. Except for SYNDIG1L ( P =0.08), brain methylation levels in all the other five loci affected downstream RNA expression in the Hispanics ( P <0.05), and methylation at VRTN and TOMM40 were also associated with RNA expression in NHW. Gene expression in these six loci were also regulated by CpG sites in genes that were enriched in the neuron projection and synapse (FDR<0.05). Conclusions: We identified six CpG associated genetic loci associated with AD in Hispanics, harboring both genetic and epigenetic risks. However, their downstream effects on mRNA expression maybe ethnic specific and different from NHW.

20.
bioRxiv ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38260408

RESUMEN

Alzheimer's disease (AD) remains a complex challenge characterized by cognitive decline and memory loss. Genetic variations have emerged as crucial players in the etiology of AD, enabling hope for a better understanding of the disease mechanisms; yet the specific mechanism of action for those genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Using CRISPR/Cas9 gene editing, we generated a knockout model for abca7, orthologous to human ABCA7 - an established AD-risk gene. The abca7 +/- zebrafish showed reduced astroglial proliferation, synaptic density, and microglial abundance in response to amyloid beta 42 (Aß42). Single-cell transcriptomics revealed abca7 -dependent neuronal and glial cellular crosstalk through neuropeptide Y (NPY) signaling. The abca7 knockout reduced the expression of npy, bdnf and ngfra , which are required for synaptic integrity and astroglial proliferation. With clinical data in humans, we showed reduced NPY in AD correlates with elevated Braak stage, predicted regulatory interaction between NPY and BDNF , identified genetic variants in NPY associated with AD, found segregation of variants in ABCA7, BDNF and NGFR in AD families, and discovered epigenetic changes in the promoter regions of NPY, NGFR and BDNF in humans with specific single nucleotide polymorphisms in ABCA7 . These results suggest that ABCA7-dependent NPY signaling is required for synaptic integrity, the impairment of which generates a risk factor for AD through compromised brain resilience.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA