RESUMEN
BACKGROUND: Mediastinal lymph node enlargement is prevalent in patients with idiopathic pulmonary fibrosis (IPF). Studies investigating whether this phenomenon reflects specific immunologic activation are lacking. METHODS: Programmed cell death-1 (PD-1)/ programmed cell death ligand-1 (PD-L1) expression in mediastinal lymph nodes and lung tissues was analyzed. PD-1, PD-L1 mRNA expression was measured in tracheobronchial lymph nodes of mice following bleomycin-induced injury on day 14. Finally, the effect of the PD-1 inhibitor, pembrolizumab, in bleomycin-induced pulmonary fibrosis was investigated. RESULTS: We analyzed mediastinal lymph nodes of thirty-three patients (n = 33, IPF: n = 14, lung cancer: n = 10, concomitant IPF and lung cancer: n = 9) and lung tissues of two hundred nineteen patients (n = 219, IPF: 123, controls: 96). PD-1 expression was increased, while PD-L1 expression was decreased, in mediastinal lymph nodes of patients with IPF compared to lung cancer and in IPF lungs compared to control lungs. Tracheobronchial lymph nodes isolated on day 14 from bleomycin-treated mice exhibited increased size and higher PD-1, PD-L1 mRNA levels compared to saline-treated animals. Pembrolizumab blunted bleomycin-induced lung fibrosis, as indicated by reduction in Ashcroft score and improvement in respiratory mechanics. CONCLUSIONS: Mediastinal lymph nodes of patients with IPF exhibit differential expression profiles than those of patients with lung cancer indicating distinct immune-mediated pathways regulating fibrogenesis and carcinogenesis. PD-1 expression in mediastinal lymph nodes is in line with lung tissue expression. Lower doses of pembrolizumab might exert antifibrotic effects. Clinical trials aiming to endotype patients based on mediastinal lymph node profiling and accordingly implement targeted therapies such as PD-1 inhibitors are greatly anticipated.
Asunto(s)
Fibrosis Pulmonar Idiopática , Neoplasias Pulmonares , Humanos , Ratones , Animales , Receptor de Muerte Celular Programada 1/genética , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Pulmón/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Bleomicina/toxicidad , Neoplasias Pulmonares/metabolismo , Ganglios Linfáticos/patología , ARN Mensajero/genéticaRESUMEN
Chronic unresolved inflammation is the primary determinant of cardiovascular disease. Precise mechanisms that define the genesis of unresolved inflammation in heart failure with preserved ejection fraction (HFpEF) are of interest due to the obesity epidemic. To examine the obesity phenotype and its direct/indirect consequences, multiple approaches were employed using the lipoxin receptor (abbreviated as ALX) dysfunction mouse model. Indirect calorimetry analyses revealed that the deletion of ALX dysregulated energy metabolism driving toward age-related obesity. Heart function data suggest that obesity-prone ALX deficient mice had impaired myocardium strain. Comprehensive measurement of chemokines, extracellular matrix, and arrhythmogenic arrays confirmed the dysregulation of multiple ion channels gene expression with amplified inflammatory chemokines and cytokines response at the age of 4 months compared with WT counterparts. Quantitative analyses of leukocytes demonstrated an increase of proinflammatory Ly6Chi CCR2+ macrophages in the spleen and heart at a steady-state resulting in an inflamed splenocardiac axis. Signs of subtle inflammation were marked with cardiorenal, endothelial defects with decreased CD31 and eNOS and an increased iNOS and COX2 expression. Thus, ALX receptor deficiency serves as an experimental model that defines multiple cellular and molecular mechanisms in HFpEF that could be a target for the development of HFpEF therapy in cardiovascular medicine.
Asunto(s)
Cardiomiopatías/metabolismo , Células Endoteliales/metabolismo , Inflamación/metabolismo , Leucocitos/metabolismo , Obesidad/metabolismo , Receptores de Lipoxina/metabolismo , Enfermedades Vasculares/metabolismo , Animales , Cardiomiopatías/patología , Células Endoteliales/patología , Corazón/fisiopatología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Inflamación/patología , Leucocitos/patología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Miocardio/metabolismo , Miocardio/patología , Obesidad/patología , Bazo/metabolismo , Bazo/patología , Enfermedades Vasculares/patologíaRESUMEN
Lifestyle or age-related risk factors over-activate the inflammation that triggers acute heart failure (HF)-related mortality following myocardial infarction (MI). Post-MI activated leukocytes express formyl peptide receptor 2 (FPR2) that is essential for inflammation-resolution and in cardiac healing. However, the role of FPR2 in acute HF is incomplete and remain of interest. Here, we aimed to determine whether pharmacological inhibition of FPR2 perturb leukocyte trafficking in acute HF. Male C57BL/6 (8-12 weeks) mice were subjected to acute HF (MI-d1) using permanent coronary artery ligation that develops irreversible acute and chronic heart failure. FPR2 antagonist WRW4 (1 µg/kg/day) was subcutaneously injected 3 h post-MI maintaining saline-injected MI-controls. Leukocytes were quantitated using flow cytometry, and acute decompensated HF was confirmed using echocardiography and histology. FPR2 inhibition decreased the expression of FPR2 in the LV and spleen tissues. Administration of WRW4 inhibitor to mice primed immature and inactive neutrophils infiltration Ly6Gint and intensified the Ccl2 expression compared to MI-control in the infarcted LV post-MI. Leukocyte profiling revealed an overall decrease in monocytes (23.3 ± 2%) in WRW4-injected mice compared with MI-control (49.1 ± 2%) in infarcted LV. FPR2 inhibition increased F4/80+/Ly6Chi pro-inflammatory macrophages (14.8 ± 2%) compared with MI-control (10 ± 1%) with increased transcripts of pro-inflammatory markers TNF-α and IL-1ß, and decreased Arg-1 expression in the infarcted LV compared to MI-controls is suggestive of the impaired acute inflammatory response. Inhibition of FPR2 using WRW4 also disturbed splenocardiac leukocytes recruitment by priming immature neutrophils leading to the onset of incomplete resolution signaling in acute decompensated HF post-MI.
Asunto(s)
Insuficiencia Cardíaca/metabolismo , Inflamación/metabolismo , Leucocitos/metabolismo , Receptores de Formil Péptido/metabolismo , Animales , Biomarcadores/metabolismo , Vasos Coronarios/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Infarto del Miocardio/metabolismo , Neutrófilos/metabolismo , Bazo/metabolismoRESUMEN
After myocardial infarction, splenic leukocytes direct biosynthesis of specialized pro-resolving mediators (SPMs) that are essential for the resolution of inflammation and tissue repair. In a laboratory environment, after coronary ligation of healthy risk free rodents (young adult mice) leukocytes biosynthesize SPMs with induced activity of lipoxygenases and cyclooxygenases, which facilitate cardiac repair. Activated monocytes/macrophages drive the biosynthesis of SPMs following experimental myocardial infarction in mice during the acute heart failure. In the presented review, we provided the recent updates on SPMs (resolvins, lipoxins and maresins) in cardiac repair that may serve as novel therapeutics for future heart failure therapy/management. We incorporated the underlying causes of non-resolving inflammation following cardiac injury if superimposed with obesity, hypertension, diabetes, disrupted circadian rhythm, co-medication (painkillers or oncological therapeutics), and/or aging that may delay or impair the biosynthesis of SPMs, intensifying pathological remodeling in heart failure.
Asunto(s)
Insuficiencia Cardíaca , Mediadores de Inflamación , Animales , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Humanos , Inflamación/fisiopatología , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/uso terapéutico , Leucocitos , Infarto del MiocardioRESUMEN
In response to myocardial infarction (MI), time-dependent leukocyte infiltration is critical to program the acute inflammatory response. Post-MI leukocyte density, residence time in the infarcted area, and exit from the infarcted injury predict resolving or nonresolving inflammation. Overactive or unresolved inflammation is the primary determinant in heart failure pathology post-MI. Here, our review describes supporting evidence that the acute inflammatory response also guides the generation of healing and regenerative mediators after cardiac damage. Time-dependent leukocyte density and diversity and the magnitude of myocardial injury is responsible for the resolving and nonresolving pathway in myocardial healing. Post MI, the diversity of leukocytes, such as neutrophils, macrophages, and lymphocytes, has been explored that regulate the clearance of deceased cardiomyocytes by using the classic and reparative pathways. Among the innovative factors and intermediates that have been recognized as essential in acute the self-healing and clearance mechanism, we highlight specialized proresolving mediators as the emerging factor for post-MI reparative mechanisms-translational leukocyte modifiers, such as aging, the source of leukocytes, and the milieu around the leukocytes. In the clinical setting, it is possible that leukocyte diversity is more prominent as a result of risk factors, such as obesity, diabetes, and hypertension. Pharmacologic agents are critical modifiers of leukocyte diversity in healing mechanisms that may impair or stimulate the clearance mechanism. Future research is needed, with a focused approach to understand the molecular targets, cellular effectors, and receptors. A clear understanding of resolving and nonresolving inflammation in myocardial healing will help to develop novel targets with major emphasis on the resolution of inflammation in heart failure pathology.-Tourki, B., Halade, G. Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling.
Asunto(s)
Inflamación/metabolismo , Leucocitos/metabolismo , Macrófagos/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Remodelación Ventricular , Animales , Humanos , Remodelación Ventricular/fisiologíaRESUMEN
Rationale: The association between immune-cell-specific transcriptomic profiles and Idiopathic Pulmonary Fibrosis (IPF) mortality is unknown. Objectives: To determine immune-cell-specific transcriptomic profiles associated with IPF mortality. Methods: We profiled peripheral blood mononuclear cells (PBMC) in 18 participants [University of South Florida: IPF, COVID-19, post-COVID-19 Interstitial Lung Disease (Post-COVID-19 ILD), controls] by single-cell RNA sequencing (scRNA-seq) and identified 16 immune-cell-specific transcriptomic profiles. The Scoring Algorithm of Molecular Subphenotypes (SAMS) was used to calculate Up-scores based on these 16 gene profiles. Their association with outcomes was investigated in peripheral blood, Bronchoalveolar Lavage (BAL) and lung tissue of N=416 IPF patients from six cohorts. Findings were validated in an independent IPF, PBMC scRNA-seq dataset (N=38). Measurements and main results: Cox-regression models demonstrated that 230 genes from CD14 + CD163 - HLA-DR low circulating monocytes predicted IPF mortality [Pittsburgh (p=0.02), Chicago (p=0.003)]. PBMC proportions of CD14 + CD163 - HLA-DR low monocytes were higher in progressive versus stable IPF (Yale, 0.13±0.05 versus 0.09±0.05, p=0.034). Receiving operating characteristic identified a 230 gene, Up-score >41.84 (Pittsburgh) predictive of mortality in Chicago (HR: 6.58, 95%CI: 2.15-20.13, p=0.001) and in pooled analysis of BAL cohorts (HR: 2.20, 95%CI: 1.44-3.37, p=0.0003). High-risk patients had decreased expression of the T-cell co-stimulatory genes CD28 , ICOS , ITK and LCK (Pittsburgh and Chicago, p<0.01). 230 gene-up-scores negatively correlated with Forced Vital Capacity (FVC) in IPF lung tissues (LGRC, rho=-0.2, p=0.02). Results were replicated using a subset of 13 genes from the 230-gene signature (pooled PBMC cohorts - HR: 5.34, 95%CI: 2.83-10.06, p<0.0001). Conclusions: The transcriptome of CD14 + CD163 - HLA-DR low monocytes is associated with increased IPF mortality.
RESUMEN
Heart failure with preserved ejection fraction (HFpEF) is an emerging disease with signs of nonresolving inflammation, endothelial dysfunction, and multiorgan defects. Moreover, based on the clinical signs and symptoms and the rise of the obesity epidemic, the number of patients developing HFpEF is increasing. From recent molecular and cellular studies, it becomes evident that HFpEF is not a single and homogenous disease but a cluster of heterogeneous pathophysiology with aging at the base of the pyramid. Obesity superimposed on aging drives the number of inflammatory pathways that intersect with metabolic dysfunction and suboptimal inflammation. Here, we compiled information on obesity-directed macrophage dysfunction that coincide with metabolic defects. Obesity-associated proinflammatory stimuli facilitates heart and interorgan inflammation in HFpEF. Furthermore, diversified mechanisms that drive heart failure urge the need of studying pervasive and unresolved inflammation in animal models to understand HFpEF. A broad and system-based approach will help to study major translational aspects of HFpEF, since no single animal model recapitulates all signs of differential HFpEF stages in the clinical setting. Here, we covered experimental models that target HFpEF and emphasized the advances observed with formyl peptide 2 (FPR2) receptor, a prime sensor that is important in inflammation-resolution signaling. Dysfunction of FPR2 led to the development of spontaneous obesity, impaired macrophage function, and triggered kidney fibrosis, providing evidence of multiorgan defects in HFpEF in an obesogenic aging experimental model.
RESUMEN
The presistent increase of 12/15 lipoxygenase enzyme activity is correlated with uncontrolled inflammation, leading to organ dysfunction. ML351, a potent 12/15 lipoxygenase (12/15LOX) inhibitor, was reported to reduce infarct size and inflammation in a murine ischemic stroke model. In the presented work, we have applied three complementary experimental approaches, in-vitro, ex-vivo, and in-vivo, to determine whether pharmacological inhibition of 12/15LOX could dampen the inflammatory response in adult mice after Kdo2-Lipid A (KLA) as an endotoxin stimulator or post myocardial infarction (MI). Male C57BL/6 (8-12 weeks) mice were subjected to permanent coronary ligation thereby inducing acute heart failure (MI-d1 and MI-d5) for in-vivo studies. 12/15LOX antagonist ML351 (50 mg/kg) was subcutaneously injected 2 h post-MI, while MI-controls received saline. For ex-vivo experiments, ML351 (25 mg/kg) was injected as bolus after 5 min of inflammatory stimulus (KLA 1 µg/g) injection. Peritoneal macrophages (PMɸ) were harvested after 4 h post KLA. For in-vitro studies, PMɸ were treated with KLA (100 ng/mL), ML351 (10 µM), or KLA + ML351 for 4 h, and inflammatory response was evaluated. In-vivo, 5LOX expression was reduced after ML351 administration, inducing a compensatory increase of 12LOX that sensitized PMɸ toward a proinflammatory state. This was marked by higher inflammatory cytokines and dysregulation of the splenocardiac axis post-MI. ML351 treatment increased CD11b+ and Ly6Chigh populations in spleen and Ly6G+ population in heart, with a decrease in F4/80+ macrophage population at MI-d1. In-vitro results indicated that ML351 suppressed initiation of inflammation while ex-vivo results suggested ML351 overactivated inflammation consequently delaying the resolution process. Collectively, in-vitro, ex-vivo, and in-vivo results indicated that pharmacological blockade of lipoxygenases using ML351 impaired initiation of inflammation thereby dysregulated acute immune response in cardiac repair.
Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Isoxazoles/farmacología , Isoxazoles/uso terapéutico , Inhibidores de la Lipooxigenasa/farmacología , Naftalenos/farmacología , Naftalenos/uso terapéutico , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Araquidonato 12-Lipooxigenasa , Araquidonato 15-Lipooxigenasa , Araquidonato 5-Lipooxigenasa/metabolismo , Ecocardiografía , Insuficiencia Cardíaca/fisiopatología , Inmunidad Innata , Inflamación/patología , Inhibidores de la Lipooxigenasa/uso terapéutico , Activación de Macrófagos/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patologíaRESUMEN
OBJECTIVE: Recently, we observed that the specialized proresolving mediator (SPM) entity resolvin D1 activates lipoxin A4/formyl peptide receptor 2 (ALX/FPR2), which facilitates cardiac healing and persistent inflammation is a hallmark of impaired cardiac repair in aging. Splenic leukocyte-directed SPMs are essential for the safe clearance of inflammation and cardiac repair after injury; however, the target of SPMs remains undefined in cardiac healing and repair. METHODS: To define the mechanistic basis of ALX/FPR2 as a resolvin D1 target, ALX/FPR2-null mice were examined extensively. The systolic-diastolic heart function was assessed using echocardiography, leukocytes were phenotyped using flow cytometry, and SPMs were quantitated using mass spectrometry. The presence of cardiorenal syndrome was validated using histology and renal markers. RESULTS: Lack of ALX/FPR2 led to the development of spontaneous obesity and diastolic dysfunction with reduced survival with aging. After cardiac injury, ALX/FPR2-/- mice showed lower expression of lipoxygenases (-5, -12, -15) and a reduction in SPMs in the infarcted left ventricle and spleen, indicating nonresolving inflammation. Reduced SPM levels in the infarcted heart and spleen are suggestive of impaired cross-talk between the injured heart and splenic leukocytes, which are required for the resolution of inflammation. In contrast, cyclooxygenases (-1 and -2) were over amplified in the infarcted heart. Together, these results suggest interorgan signaling in which the spleen acts as both an SPM biosynthesizer and supplier in acute heart failure. ALX/FPR2 dysfunction magnified obesogenic cardiomyopathy and renal inflammation (↑NGAL, ↑TNF-α, ↑CCL2, ↑IL-1ß) with elevated plasma creatinine levels in aging mice. At the cellular level, ALX/FPR2-/- mice showed impairment of macrophage phagocytic function ex-vivo with expansion of neutrophils after myocardial infarction. CONCLUSIONS: Lack of ALX/FPR2 induced obesity, reduced the life span, amplified leukocyte dysfunction, and facilitated profound interorgan nonresolving inflammation. Our study shows the integrative and indispensable role of ALX/FPR2 in lipid metabolism, cardiac inflammation-resolution processes, obesogenic aging, and renal homeostasis.
Asunto(s)
Insuficiencia Cardíaca/metabolismo , Inflamación/metabolismo , Lipoxinas/metabolismo , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Factores de Edad , Animales , Insuficiencia Cardíaca/patología , Humanos , Inflamación/patología , Lipoxinas/deficiencia , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Formil Péptido/deficiencia , Receptores de Lipoxina/deficienciaRESUMEN
BACKGROUND: After myocardial infarction (MI), delayed progression or reversal of cardiac remodeling is a prime target to limit advanced chronic heart failure (HF). However, the temporal kinetics of lipidomic and systemic metabolic signaling is unclear in HF. There is no consensus on metabolic and lipidomic signatures that influence structure, function, and survival in HF. Here we use genetic knock out model to delineate lipidomic, and metabolic changes to describe the role of lipoxygenase in advancing ischemic HF driven by leukocyte activation with signs of non-resolving inflammation. Bioactive lipids and metabolites are implicated in acute and chronic HF, and the goal of this study was to define the role of lipoxygenase in temporal kinetics of lipidomic and metabolic reprogramming in HF. MATERIALS AND METHODS: To address this question, we used a permanent coronary ligation mouse model which showed profound metabolic and lipidomic reprogramming in acute HF. Additionally, we defined the lipoxygenase-mediated changes in cardiac pathophysiology in acute and chronic HF. For this, we quantitated systemic metabolic changes and lipidomic profiling in infarcted heart tissue with obvious structural remodeling and cardiac dysfunction progressing from acute to chronic HF in the survival cohort. RESULTS: After MI, lipoxygenase-derived specialized pro-resolving mediators were quantitated and showed lipoxygenase-deficient mice (12/15LOX-/-) biosynthesize epoxyeicosatrienoic acid (EETs; cypoxins) to facilitate cardiac healing. Lipoxygenase-deficient mice reduced diabetes risk biomarker 2-aminoadipic acid with profound alterations of plasma metabolic signaling of hexoses, amino acids, biogenic amines, acylcarnitines, glycerophospholipids, and sphingolipids in acute HF, thereby improved survival. CONCLUSION: Specific lipoxygenase deletion alters lipidomic and metabolic signatures, with modified leukocyte profiling that delayed HF progression and improved survival. Future studies are warranted to define the molecular network of lipidome and metabolome in acute and chronic HF patients.
Asunto(s)
Insuficiencia Cardíaca/metabolismo , Metabolismo de los Lípidos/fisiología , Lipidómica , Lipooxigenasas/metabolismo , Ácido 2-Aminoadípico/análisis , Ácido 2-Aminoadípico/metabolismo , Animales , Biomarcadores , Vasos Coronarios , Corazón/fisiopatología , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/genética , Cinética , Leucocitos/metabolismo , Leucocitos/patología , Ligadura , Metabolismo de los Lípidos/genética , Lipooxigenasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Isquemia Miocárdica/enzimología , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Miocardio/patología , Análisis de SupervivenciaRESUMEN
Myocardial infarction (MI) followed by left ventricular (LV) remodeling is the most frequent cause of heart failure. Lebetin 2 (L2), a snake venom-derived natriuretic peptide, exerts cardioprotection during acute myocardial ischemia-reperfusion (IR) ex vivo. However, its effects on delayed consequences of IR injury, including post-MI inflammation and fibrosis have not been defined. Here, we determined whether a single L2 injection exerts cardioprotection in IR murine models in vivo, and whether inflammatory response to ischemic injury plays a role in L2-induced effects. We quantified infarct size (IS), fibrosis, inflammation, and both endothelial cell and cardiomyocyte densities in injured myocardium and compared these values with those induced by B-type natriuretic peptide (BNP). Both L2 and BNP reduced IS, fibrosis, and inflammatory response after IR, as evidenced by decreased leukocyte and proinflammatory M1 macrophage infiltrations in the infarcted area compared to untreated animals. However, only L2 increased anti-inflammatory M2-like macrophages. L2 also induced a higher density of endothelial cells and cardiomyocytes. Our data show that L2 has strong, acute, prolonged cardioprotective effects in post-MI that are mediated, at least in part, by the modulation of the post-ischemic inflammatory response and especially, by the enhancement of M2-like macrophages, thus reducing IR-induced necrotic and fibrotic effects.
Asunto(s)
Antiinflamatorios/uso terapéutico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Péptido Natriurético Encefálico/uso terapéutico , Venenos de Víboras/uso terapéutico , Animales , Presión Sanguínea/efectos de los fármacos , Fibrosis , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Ratas WistarRESUMEN
Cardiac ischemia is one of the leading causes of death worldwide. It is now well established that natriuretic peptides can attenuate the development of irreversible ischemic injury during myocardial infarction. Lebetin 2 (L2) is a new discovered peptide isolated from Macrovipera lebetina venom with structural similarity to B-type natriuretic peptide (BNP). Our objectives were to define the acute cardioprotective actions of L2 in isolated Langendorff-perfused rat hearts after regional or global ischemia-reperfusion (IR). We studied infarct size, left ventricular contractile recovery, survival protein kinases and mitochondrial permeability transition pore (mPTP) opening in injured myocardium. L2 dosage was determined by preliminary experiments at its ability to induce cyclic guanosine monophosphate (cGMP) release without changing hemodynamic effects in normoxic hearts. L2 was found to be as effective as BNP in reducing infarct size after the induction of either regional or global IR. Both peptides equally improved contractile recovery after regional IR, but only L2 increased coronary flow and reduced severe contractile dysfunction after global ischemia. Cardioprotection afforded by L2 was abolished after isatin or 5-hydroxydecanote pretreatment suggesting the involvement of natriuretic peptide receptors and mitochondrial KATP (mitoKATP) channels in the L2-induced effects. L2 also increased survival protein expression in the reperfused myocardium as evidenced by phosphorylation of signaling pathways PKCε/ERK/GSK3ß and PI3K/Akt/eNOS. IR induced mitochondrial pore opening, but this effect was markedly prevented by L2 treatment. These data show that L2 has strong cardioprotective effect in acute ischemia through stimulation of natriuretic peptide receptors. These beneficial effects are mediated, at least in part, by mitoKATP channel opening and downstream activated survival kinases, thus delaying mPTP opening and improving IR-induced mitochondrial dysfunction.