Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(44): e2123430119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279460

RESUMEN

Human accomplishments depend on learning, and effective learning depends on consolidation. Consolidation is the process whereby new memories are gradually stored in an enduring way in the brain so that they can be available when needed. For factual or event knowledge, consolidation is thought to progress during sleep as well as during waking states and to be mediated by interactions between hippocampal and neocortical networks. However, consolidation is difficult to observe directly but rather is inferred through behavioral observations. Here, we investigated overnight memory change by measuring electrical activity in and near the hippocampus. Electroencephalographic (EEG) recordings were made in five patients from electrodes implanted to determine whether a surgical treatment could relieve their seizure disorders. One night, while each patient slept in a hospital monitoring room, we recorded electrophysiological responses to 10 to 20 specific sounds that were presented very quietly, to avoid arousal. Half of the sounds had been associated with objects and their precise spatial locations that patients learned before sleep. After sleep, we found systematic improvements in spatial recall, replicating prior results. We assume that when the sounds were presented during sleep, they reactivated and strengthened corresponding spatial memories. Notably, the sounds also elicited oscillatory intracranial EEG activity, including increases in theta, sigma, and gamma EEG bands. Gamma responses, in particular, were consistently associated with the degree of improvement in spatial memory exhibited after sleep. We thus conclude that this electrophysiological activity in the hippocampus and adjacent medial temporal cortex reflects sleep-based enhancement of memory storage.


Asunto(s)
Consolidación de la Memoria , Humanos , Sueño/fisiología , Recuerdo Mental/fisiología , Encéfalo , Hipocampo/fisiología , Memoria Espacial
2.
Epilepsia ; 65(7): 1868-1878, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38722693

RESUMEN

Intracranial electroencephalographic (IEEG) recording, using subdural electrodes (SDEs) and stereoelectroencephalography (SEEG), plays a pivotal role in localizing the epileptogenic zone (EZ). SDEs, employed for superficial cortical seizure foci localization, provide information on two-dimensional seizure onset and propagation. In contrast, SEEG, with its three-dimensional sampling, allows exploration of deep brain structures, sulcal folds, and bihemispheric networks. SEEG offers the advantages of fewer complications, better tolerability, and coverage of sulci. Although both modalities allow electrical stimulation, SDE mapping can tessellate cortical gyri, providing the opportunity for a tailored resection. With SEEG, both superficial gyri and deep sulci can be stimulated, and there is a lower risk of afterdischarges and stimulation-induced seizures. Most systematic reviews and meta-analyses have addressed the comparative effectiveness of SDEs and SEEG in localizing the EZ and achieving seizure freedom, although discrepancies persist in the literature. The combination of SDEs and SEEG could potentially overcome the limitations inherent to each technique individually, better delineating seizure foci. This review describes the strengths and limitations of SDE and SEEG recordings, highlighting their unique indications in seizure localization, as evidenced by recent publications. Addressing controversies in the perceived usefulness of the two techniques offers insights that can aid in selecting the most suitable IEEG in clinical practice.


Asunto(s)
Electrocorticografía , Espacio Subdural , Humanos , Electrocorticografía/métodos , Electrocorticografía/instrumentación , Electrodos Implantados , Electroencefalografía/métodos , Epilepsia/fisiopatología , Epilepsia/diagnóstico , Mapeo Encefálico/métodos , Técnicas Estereotáxicas , Electrodos , Encéfalo/fisiopatología , Encéfalo/fisiología
3.
Artif Organs ; 48(3): 263-273, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37170929

RESUMEN

BACKGROUND: Spinal cord injury causes a drastic loss in motor and sensory function. Intraspinal microstimulation (ISMS) is an electrical stimulation method developed for restoring motor function by activating the spinal networks below the level of injury. Current ISMS technology uses fine penetrating microwires to stimulate the ventral horn of the lumbar enlargement. The penetrating wires traverse the dura mater through a transdural conduit that connects to an implantable pulse generator. OBJECTIVE: A wireless, fully intradural ISMS implant was developed to mitigate the potential complications associated with the transdural conduit, including tethering and leakage of cerebrospinal fluid. METHODS: Two wireless floating microelectrode array (WFMA) devices were implanted in the lumbar enlargement of an adult domestic pig. Voltage transients were used to assess the electrochemical stability of the interface. Manual flexion and extension movements of the spine were performed to evaluate the mechanical stability of the interface. Post-mortem 9T MRI imaging was used to confirm the location of the electrodes. RESULTS: The WFMA-based ISMS interface successfully evoked extension and flexion movements of the hip joint. Stimulation thresholds remained stable following manual extension and flexion of the spine. CONCLUSION: The preliminary results demonstrate the surgical feasibility as well as the functionality of the proposed wireless ISMS system.


Asunto(s)
Traumatismos de la Médula Espinal , Animales , Porcinos , Traumatismos de la Médula Espinal/cirugía , Médula Espinal/cirugía , Médula Espinal/fisiología , Movimiento , Microelectrodos , Columna Vertebral , Estimulación Eléctrica , Electrodos Implantados
4.
J Neurophysiol ; 127(6): 1547-1563, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35507478

RESUMEN

Sounds enhance our ability to detect, localize, and respond to co-occurring visual targets. Research suggests that sounds improve visual processing by resetting the phase of ongoing oscillations in visual cortex. However, it remains unclear what information is relayed from the auditory system to visual areas and if sounds modulate visual activity even in the absence of visual stimuli (e.g., during passive listening). Using intracranial electroencephalography (iEEG) in humans, we examined the sensitivity of visual cortex to three forms of auditory information during a passive listening task: auditory onset responses, auditory offset responses, and rhythmic entrainment to sounds. Because some auditory neurons respond to both sound onsets and offsets, visual timing and duration processing may benefit from each. In addition, if auditory entrainment information is relayed to visual cortex, it could support the processing of complex stimulus dynamics that are aligned between auditory and visual stimuli. Results demonstrate that in visual cortex, amplitude-modulated sounds elicited transient onset and offset responses in multiple areas, but no entrainment to sound modulation frequencies. These findings suggest that activity in visual cortex (as measured with iEEG in response to auditory stimuli) may not be affected by temporally fine-grained auditory stimulus dynamics during passive listening (though it remains possible that this signal may be observable with simultaneous auditory-visual stimuli). Moreover, auditory responses were maximal in low-level visual cortex, potentially implicating a direct pathway for rapid interactions between auditory and visual cortices. This mechanism may facilitate perception by time-locking visual computations to environmental events marked by auditory discontinuities.NEW & NOTEWORTHY Using intracranial electroencephalography (iEEG) in humans during a passive listening task, we demonstrate that sounds modulate activity in visual cortex at both the onset and offset of sounds, which likely supports visual timing and duration processing. However, more complex auditory rate information did not affect visual activity. These findings are based on one of the largest multisensory iEEG studies to date and reveal the type of information transmitted between auditory and visual regions.


Asunto(s)
Corteza Auditiva , Corteza Visual , Estimulación Acústica/métodos , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Humanos , Sonido , Corteza Visual/fisiología , Percepción Visual/fisiología
5.
Eur J Neurosci ; 54(9): 7301-7317, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34587350

RESUMEN

Speech perception is a central component of social communication. Although principally an auditory process, accurate speech perception in everyday settings is supported by meaningful information extracted from visual cues. Visual speech modulates activity in cortical areas subserving auditory speech perception including the superior temporal gyrus (STG). However, it is unknown whether visual modulation of auditory processing is a unitary phenomenon or, rather, consists of multiple functionally distinct processes. To explore this question, we examined neural responses to audiovisual speech measured from intracranially implanted electrodes in 21 patients with epilepsy. We found that visual speech modulated auditory processes in the STG in multiple ways, eliciting temporally and spatially distinct patterns of activity that differed across frequency bands. In the theta band, visual speech suppressed the auditory response from before auditory speech onset to after auditory speech onset (-93 to 500 ms) most strongly in the posterior STG. In the beta band, suppression was seen in the anterior STG from -311 to -195 ms before auditory speech onset and in the middle STG from -195 to 235 ms after speech onset. In high gamma, visual speech enhanced the auditory response from -45 to 24 ms only in the posterior STG. We interpret the visual-induced changes prior to speech onset as reflecting crossmodal prediction of speech signals. In contrast, modulations after sound onset may reflect a decrease in sustained feedforward auditory activity. These results are consistent with models that posit multiple distinct mechanisms supporting audiovisual speech perception.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Estimulación Acústica , Percepción Auditiva , Humanos , Habla , Percepción Visual
6.
J Cogn Neurosci ; 31(7): 1002-1017, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30912728

RESUMEN

Co-occurring sounds can facilitate perception of spatially and temporally correspondent visual events. Separate lines of research have identified two putatively distinct neural mechanisms underlying two types of crossmodal facilitations: Whereas crossmodal phase resetting is thought to underlie enhancements based on temporal correspondences, lateralized occipital evoked potentials (ERPs) are thought to reflect enhancements based on spatial correspondences. Here, we sought to clarify the relationship between these two effects to assess whether they reflect two distinct mechanisms or, rather, two facets of the same underlying process. To identify the neural generators of each effect, we examined crossmodal responses to lateralized sounds in visually responsive cortex of 22 patients using electrocorticographic recordings. Auditory-driven phase reset and ERP responses in visual cortex displayed similar topography, revealing significant activity in pericalcarine, inferior occipital-temporal, and posterior parietal cortex, with maximal activity in lateral occipitotemporal cortex (potentially V5/hMT+). Laterality effects showed similar but less widespread topography. To test whether lateralized and nonlateralized components of crossmodal ERPs emerged from common or distinct neural generators, we compared responses throughout visual cortex. Visual electrodes responded to both contralateral and ipsilateral sounds with a contralateral bias, suggesting that previously observed laterality effects do not emerge from a distinct neural generator but rather reflect laterality-biased responses in the same neural populations that produce phase-resetting responses. These results suggest that crossmodal phase reset and ERP responses previously found to reflect spatial and temporal facilitation in visual cortex may reflect the same underlying mechanism. We propose a new unified model to account for these and previous results.


Asunto(s)
Percepción Auditiva/fisiología , Potenciales Evocados Auditivos , Potenciales Evocados Visuales , Corteza Visual/fisiología , Percepción Visual/fisiología , Estimulación Acústica , Adolescente , Adulto , Electrocorticografía , Femenino , Lateralidad Funcional , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa , Factores de Tiempo , Adulto Joven
7.
J Neurol Neurosurg Psychiatry ; 89(5): 542-548, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29183959

RESUMEN

OBJECTIVE: To determine the outcomes of combined stereo-electroencephalography-guided and MRI-guided stereotactic laser interstitial thermal therapy (LITT) in the treatment of patients with drug-resistant mesial temporal lobe epilepsy (mTLE). METHODS: We prospectively assessed the surgical and neuropsychological outcomes in 21 patients with medically refractory mTLE who underwent LITT at the University of Chicago Medical Center. We further compared the surgical outcomes in patients with and without mesial temporal sclerosis (MTS). RESULTS: Of the 21 patients, 19 (90%) underwent Invasive EEG study and 11 (52%) achieved freedom from disabling seizures with a mean duration of postoperative follow-up of 24±11 months after LITT. Eight (73%) of 11 patients with MTS achieved freedom from disabling seizures, whereas 3 (30 %) of 10 patients without MTS achieved freedom from disabling seizures. Patients with MTS were significantly more likely to become seizure-free, as compared with those without MTS (P=0.002). There was no significant difference in total ablation volume and the percentage of the ablated amygdalohippocampal complex between seizure-free and non-seizure-free patients. Presurgical and postsurgical neuropsychological assessments were obtained in 10 of 21 patients. While there was no group decline in any neuropsychological assessment, a significant postoperative decline in verbal memory and confrontational naming was observed in individual patients. CONCLUSIONS: MRI-guided LITT is a safe and effective alternative to selective amygdalohippocampectomy and anterior temporal lobectomy for mTLE with MTS. Nevertheless, its efficacy in those without MTS seems modest. Large multicentre and prospective studies are warranted to further determine the efficacy and safety of LITT.


Asunto(s)
Epilepsia Refractaria/cirugía , Epilepsia del Lóbulo Temporal/cirugía , Terapia por Láser/métodos , Esclerosis/cirugía , Técnicas Estereotáxicas , Adulto , Anciano , Epilepsia Refractaria/complicaciones , Electroencefalografía , Epilepsia del Lóbulo Temporal/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Imagen Multimodal , Pruebas Neuropsicológicas , Estudios Prospectivos , Esclerosis/complicaciones , Resultado del Tratamiento , Adulto Joven
8.
Epilepsy Behav ; 80: 331-336, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29433947

RESUMEN

Glutamic acid decarboxylase (GAD) antibody-associated encephalitis causes both acute seizures and chronic epilepsy with predominantly temporal lobe onset. This condition is challenging in diagnosis and management, and the incidence of GAD antibody (Ab)-related epilepsy could be much higher than commonly believed. Imaging and CSF evidence of inflammation along with typical clinical presentations, such as adult onset temporal lobe epilepsy (TLE) with unexplained etiology, should prompt testing for the diagnostic antibodies. High serum GAD Ab titer (≥2000U/mL or ≥20nmol/L) and evidence of intrathecal anti-GAD Ab synthesis support the diagnosis. Unlike other immune-mediated epilepsies, antiglutamic acid decarboxylase 65 (GAD65) antibody-mediated epilepsy is often poorly responsive to antiepileptic drugs (AEDs) and only moderately responsive to immune therapy with steroids, intravenous immunoglobulin (IVIG), or plasma exchange (PLEX). Long-term treatment with more aggressive immunosuppressants such as rituximab (RTX) and/or cyclophosphamide is often necessary and may be more effective than current immunosuppressive approaches. The aim of this review is to review the physiology, pathology, clinical presentation, related ancillary tests, and management of GAD Ab-associated autoimmune epilepsy by searching the keywords and to promote the recognition and the initiation of proper therapy for this condition.


Asunto(s)
Anticuerpos/sangre , Encefalitis/inmunología , Epilepsia del Lóbulo Temporal/inmunología , Epilepsia/inmunología , Glutamato Descarboxilasa/inmunología , Encefalitis Límbica/inmunología , Adulto , Autoanticuerpos/sangre , Carboxiliasas , Encefalitis/diagnóstico , Epilepsia/diagnóstico , Epilepsia/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/sangre , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Femenino , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Encefalitis Límbica/diagnóstico , Encefalitis Límbica/patología , Personalidad , Convulsiones/diagnóstico , Convulsiones/tratamiento farmacológico , Convulsiones/inmunología , Lóbulo Temporal , Resultado del Tratamiento
9.
Muscle Nerve ; 55(6): 862-868, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27699797

RESUMEN

INTRODUCTION: Simple laboratory tests of upper motor neuron involvement in amyotrophic lateral sclerosis (ALS) are not available. Intermuscular coherence has been shown to distinguish patients with primary lateral sclerosis, a pure upper motor neuron disorder, from normal subjects, suggesting it could be useful for assessing ALS. We aimed to determine whether intermuscular coherence can distinguish ALS patients from normal subjects. METHODS: We measured biceps brachii and brachioradialis activity using surface electromyography while subjects held the elbow at flexion and the forearm in semipronation. Intermuscular coherence was calculated at between 20 and 40 Hz in 15 ALS patients and 15 normal subjects. RESULTS: On average, intermuscular coherence was 3.8-fold greater in normal subjects than in ALS patients (P < 0.01), and it distinguished ALS patients from normal subjects with a sensitivity of 87% and specificity of 87%. CONCLUSION: Intermuscular coherence measurement is a rapid, painless method that may detect upper motor neuron dysfunction in ALS. Muscle Nerve 55: 862-868, 2017.


Asunto(s)
Músculo Esquelético/fisiopatología , Anciano , Esclerosis Amiotrófica Lateral , Brazo/inervación , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad
10.
Epilepsy Behav ; 76: 1-6, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28917499

RESUMEN

OBJECTIVE: The objective of this study was to determine the association of sleep with sudden unexpected death in epilepsy (SUDEP). METHODS: We conducted a systematic review and meta-analysis based on literature search from databases PubMed, Web of Science, and Scopus using keywords "SUDEP", or "sudden unexpected death in epilepsy", or "sudden unexplained death in epilepsy". Sudden unexpected death in epilepsy was considered to occur during sleep if the patient was found in bed, if the SUDEP cases were documented as in sleep, or if the patient was found at bedside on the bedroom floor. RESULTS: Circadian pattern was documented in 880 of the 1025 SUDEP cases in 67 studies meeting the inclusion and exclusion criteria. Of the 880 SUDEP cases, 69.3% occurred during sleep and 30.7% occurred during wakefulness. Sudden unexpected death in epilepsy was significantly associated with sleep as compared to wakefulness (P<0.001). In the subgroup of 272 cases in which circadian pattern and age were documented, patients 40years old or younger were more likely to die in sleep than those older than 40years (OR: 2.0; 95% CI=1.0, 3.8; P=0.05). In the subgroup of 114 cases in which both circadian pattern and body position at the time of death were documented, 87.6% (95% CI=81.1%, 94.2%) of patients who died during sleep were in the prone position, whereas 52.9% (95% CI=24.7%, 81.1%) of patients who died during wakefulness were in the prone position. Patients with nocturnal seizures were 6.3 times more likely to die in a prone position than those with diurnal seizures (OR: 6.3; 95% CI=2.0, 19.5; P=0.002). CONCLUSIONS: There is a strong association of SUDEP with sleep, suggesting that sleep is a significant risk factor for SUDEP. Although the risks of SUDEP associated with sleep are unknown and likely multifactorial, the prone position might be an important contributory factor.


Asunto(s)
Muerte Súbita/etiología , Epilepsia/complicaciones , Posición Prona , Convulsiones/complicaciones , Sueño/fisiología , Femenino , Humanos , Masculino , Postura , Factores de Riesgo , Vigilia
11.
J Neurophysiol ; 114(5): 3023-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26334017

RESUMEN

Neurophysiological studies with animals suggest that sounds modulate activity in primary visual cortex in the presence of concurrent visual stimulation. Noninvasive neuroimaging studies in humans have similarly shown that sounds modulate activity in visual areas even in the absence of visual stimuli or visual task demands. However, the spatial and temporal limitations of these noninvasive methods prevent the determination of how rapidly sounds activate early visual cortex and what information about the sounds is relayed there. Using spatially and temporally precise measures of local synaptic activity acquired from depth electrodes in humans, we demonstrate that peripherally presented sounds evoke activity in the anterior portion of the contralateral, but not ipsilateral, calcarine sulcus within 28 ms of sound onset. These results suggest that auditory stimuli rapidly evoke spatially specific activity in visual cortex even in the absence of concurrent visual stimulation or visual task demands. This rapid auditory-evoked activation of primary visual cortex is likely to be mediated by subcortical pathways or direct cortical projections from auditory to visual areas.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Electrocorticografía , Lóbulo Occipital/fisiología , Corteza Visual/fisiología , Estimulación Acústica , Adulto , Lateralidad Funcional , Humanos , Masculino , Factores de Tiempo
12.
Front Neurosci ; 16: 876032, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003961

RESUMEN

Successful monitoring of the condition of stimulation electrodes is critical for maintaining chronic device performance for neural stimulation. As part of pre-clinical safety testing in preparation for a visual prostheses clinical trial, we evaluated the stability of the implantable devices and stimulation electrodes using a combination of current pulsing in saline and in canine visual cortex. Specifically, in saline we monitored the stability and performance of 3000 µm2 geometric surface area activated iridium oxide film (AIROF) electrodes within a wireless floating microelectrode array (WFMA) by measuring the voltage transient (VT) response through reverse telemetry. Eight WFMAs were assessed in vitro for 24 days, where n = 4 were pulsed continuously at 80 µA (16 nC/phase) and n = 4 remained in solution with no applied stimulation. Subsequently, twelve different WFMAs were implanted in visual cortex in n = 3 canine subjects (4 WFMAs each). After a 2-week recovery period, half of the electrodes in each of the twelve devices were pulsed continuously for 24 h at either 20, 40, 63, or 80 µA (200 µs pulse width, 100 Hz). VTs were recorded to track changes in the electrodes at set time intervals in both the saline and in vivo study. The VT response of AIROF electrodes remained stable during pulsing in saline over 24 days. Electrode polarization and driving voltage changed by less than 200 mV on average. The AIROF electrodes also maintained consistent performance, overall, during 24 h of pulsing in vivo. Four of the in vivo WFMA devices showed a change in polarization, access voltage, or driving voltage over time. However, no VT recordings indicated electrode failure, and the same trend was typically seen in both pulsed and unpulsed electrodes within the same device. Overall, accelerated stimulation testing in saline and in vivo indicated that AIROF electrodes in the WFMA were able to consistently deliver up to 16 nC per pulse and would be suitable for chronic clinical use.

13.
Epilepsy Res ; 182: 106914, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35367692

RESUMEN

OBJECTIVE: To identify scalp EEG correlates of hippocampal spikes in patients with mesial temporal lobe epilepsy (mTLE). METHODS: We recorded scalp and intracranial EEG simultaneously in 20 consecutive surgical candidates with mTLE. Hippocampal spikes were identified from depth electrodes during the first hour of sleep on the first night of recording in the epilepsy monitoring unit, and their scalp EEG correlates were identified. RESULTS: Hippocampal spiking rates varied widely from 101 to 2187 (556 ± 672, mean ± SD) spikes per hour among the subjects. Of the 16,398 hippocampal spikes observed in this study, 492 (3.0%) of hippocampal spikes with extensive involvement of lateral temporal cortex were associated with scalp interictal epileptiform discharges (IEDs) including spikes and sharp waves; 198 (1.2%) of hippocampal spikes with limited involvement of lateral temporal cortex were associated with sharp transients or sharp slow waves, and 78 (0.05%)of hippocampal spikes with no lateral temporal involvement were associated with small sharp spikes (SSS). SSS were not correlated with independent temporal neocortical spikes. CONCLUSIONS: There are morphologically heterogeneous scalp EEG correlates of hippocampal spikes including SSS, sharp transients, sharp slow waves, spikes, and sharp waves. SSS correlate with hippocampal spikes and are likely an EEG marker for mTLE. These findings have important clinical implications for the diagnosis and localization of mTLE, and provide new perspectives on criteria for defining scalp IEDs.


Asunto(s)
Epilepsia del Lóbulo Temporal , Cuero Cabelludo , Electroencefalografía , Epilepsia del Lóbulo Temporal/diagnóstico , Epilepsia del Lóbulo Temporal/cirugía , Hipocampo , Humanos , Lóbulo Temporal
14.
Brain Topogr ; 23(4): 333-43, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20652392

RESUMEN

The aim of the present study was to assess the feasibility of identifying the primary hand sensory area and central sulcus in pediatric patients using the cortical potential imaging (CPI) method from the scalp recorded somatosensory evoked potentials (SEPs). The CPI method was used to reconstruct the cortical potential distribution from the scalp potentials with the boundary element (3-layer: scalp, skull and brain) head model based on MR images of individual subjects. The cortical potentials estimated from the pre-operative scalp SEPs of four pediatric patients, were compared with the post-op subdural SEP recordings made in the same subjects. Estimated and directly recorded cortical SEP maps showed comparable spatial patterns on the cortical surface in four patients (spatial correlation coefficient >0.7 in the SEP spikes). For two of four patients, the estimated waveforms correlated significantly to the waveforms obtained by direct cortical recordings. The present results demonstrated the feasibility of the cortical potential imaging approach in noninvasive imaging spatial distribution and temporal waveforms of cortical potentials for pediatric patients. These also suggest that the CPI method may provide a promising means of estimating the cortical potential and noninvasive localizing the central sulcus to aid surgical planning for pediatric patients.


Asunto(s)
Corteza Cerebral/fisiopatología , Electroencefalografía/métodos , Epilepsia/fisiopatología , Potenciales Evocados Somatosensoriales , Encéfalo/fisiopatología , Mapeo Encefálico , Niño , Duramadre/fisiopatología , Epilepsia/diagnóstico , Epilepsia/cirugía , Estudios de Factibilidad , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Modelos Neurológicos , Periodo Posoperatorio , Periodo Preoperatorio , Cuero Cabelludo/fisiopatología , Cráneo/fisiopatología
15.
Neuroophthalmology ; 35(3): 108-114, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21866205

RESUMEN

The spinocerebellar ataxias, like all neurodegenerative diseases, lack objective disease- and stage-specific biomarkers. Based on reports of clinically evident optic disc atrophy or retinal disease in some ataxia patients, and the discovery that pre-symptomatic retinal thinning occurs in other neurologic diseases such as multiple sclerosis, we tested the hypothesis that subclinical neuronal or axonal loss in the retina could occur in the degenerative ataxias. Spectral domain optical coherence tomography was performed on 29 ataxia patients with genetically proven spinocerebellar ataxia (SCA) 1, 2, 3, or 6, or multisystem atrophy type C (MSA-C) and 27 age-matched normal subjects. Ataxia patients were assessed using the scale for assessment and rating of ataxia. Compared with normal control subjects, retinal nerve fibre layer (RNFL) thickness was reduced for patients with SCA2 and SCA3, and thickness in the macular region was reduced for all SCAs but SCA2.

16.
J Neural Eng ; 18(2)2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33339020

RESUMEN

Objective. All of the human prosthetic visual systems implanted so far have been achromatic. Schmidtet al(1996Brain119507-22) reported that at low stimulation intensities their subject reported that phosphenes usually had a specific hue, but when the stimulus intensity was increased, they desaturated to white. We speculate here that previous B/W prosthetic systems were unnecessarily over-stimulating the visual cortex to obtain white phosphenes, which may be why unexpected alterations in phosphenes and seizures were not an uncommon occurrence. A color prosthesis would have the advantage of being elicited by lower levels of stimulation, reducing the probability of causing epileptogenic responses.Approach.A 'hybrid' mode of stimulation is suggested, involving a combination of B/W and color stimulation, which could provide color information without reducing spatial resolution.Main results.Colors in the real world are spread along intensity and chromatic gradients.Significance.Software implementation strategies are discussed, as are the advantages and challenges for possible color prosthetic systems.


Asunto(s)
Corteza Visual , Prótesis Visuales , Humanos , Fosfenos , Trastornos de la Visión , Corteza Visual/fisiología
17.
Front Hum Neurosci ; 15: 754091, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095448

RESUMEN

Tremor of the upper extremity is a significant cause of disability in some patients with multiple sclerosis (MS). The MS tremor is complex because it contains an ataxic intentional tremor component due to the involvement of the cerebellum and cerebellar outflow pathways by MS plaques, which makes the MS tremor, in general, less responsive to medications or deep brain stimulation (DBS) than those associated with essential tremor or Parkinson's disease. The cerebellar component has been thought to be the main reason for making DBS less effective, although it is not clear whether it is due to the lack of suppression of the ataxic tremor by DBS or else. The goal of this study was to clarify the effect of DBS on cerebellar tremor compared to non-cerebellar tremor in a patient with MS. By wearing an accelerometer on the index finger of each hand, we were able to quantitatively characterize kinetic tremor by frequency and amplitude, with cerebellar ataxia component on one hand and that without cerebellar component on the other hand, at the beginning and end of the hand movement approaching a target at DBS Off and On status. We found that cerebellar tremor surprisingly had as good a response to DBS as the tremor without a cerebellar component, but the function control on cerebellar tremor was not as good due to its distal oscillation, which made the amplitude of tremor increasingly greater as it approached the target. This explains why cerebellar tremor or MS tremor with cerebellar component has a poor functional transformation even with a good percentage of tremor control. This case study provides a better understanding of the effect of DBS on cerebellar tremor and MS tremor by using a wearable device, which could help future studies improve patient selection and outcome prediction for DBS treatment of this disabling tremor.

18.
Front Neurol ; 12: 654668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079512

RESUMEN

Objective: To assess the seizure outcomes of stereotactic laser amygdalohippocampectomy (SLAH) in consecutive patients with mesial temporal lobe epilepsy (mTLE) in a single center and identify scalp EEG and imaging factors in the presurgical evaluation that correlate with post-surgical seizure recurrence. Methods: We retrospectively reviewed the medical and EEG records of 30 patients with drug-resistant mTLE who underwent SLAH and had at least 1 year of follow-up. Surgical outcomes were classified using the Engel scale. Univariate hazard ratios were used to evaluate the risk factors associated with seizure recurrence after SLAH. Results: The overall Engel class I outcome after SLAH was 13/30 (43%), with a mean postoperative follow-up of 48.9 ± 17.6 months. Scalp EEG findings of interictal regional slow activity (IRSA) on the side of surgery (HR = 4.05, p = 0.005) and non-lateralizing or contra-lateralizing seizure onset (HR = 4.31, p = 0.006) were negatively correlated with postsurgical seizure freedom. Scalp EEG with either one of the above features strongly predicted seizure recurrence after surgery (HR = 7.13, p < 0.001) with 100% sensitivity and 71% specificity. Significance: Understanding the factors associated with good or poor surgical outcomes can help choose the best candidates for SLAH. Of the variables assessed, scalp EEG findings were the most clearly associated with seizure outcomes after SLAH.

19.
Clin Neurophysiol ; 132(1): 80-93, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33360179

RESUMEN

OBJECTIVE: To describe the spatio-temporal dynamics and interactions during linguistic and memory tasks. METHODS: Event-related electrocorticographic (ECoG) spectral patterns obtained during cognitive tasks from 26 epilepsy patients (aged: 9-60 y) were analyzed in order to examine the spatio-temporal patterns of activation of cortical language areas. ECoGs (1024 Hz/channel) were recorded from 1567 subdural electrodes and 510 depth electrodes chronically implanted over or within the frontal, parietal, occipital and/or temporal lobes as part of their surgical work-up for intractable seizures. Six language/memory tasks were performed, which required responding verbally to auditory or visual word stimuli. Detailed analysis of electrode locations allowed combining results across patients. RESULTS: Transient increases in induced ECoG gamma power (70-100 Hz) were observed in response to hearing words (central superior temporal gyrus), reading text and naming pictures (occipital and fusiform cortex) and speaking (pre-central, post-central and sub-central cortex). CONCLUSIONS: Between these activations there was widespread spatial divergence followed by convergence of gamma activity that reliably identified cortical areas associated with task-specific processes. SIGNIFICANCE: The combined dataset supports the concept of functionally-specific locally parallel language networks that are widely distributed, partially interacting in succession to serve the cognitive and behavioral demands of the tasks.


Asunto(s)
Corteza Cerebral/fisiología , Lenguaje , Red Nerviosa/fisiología , Adolescente , Adulto , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Niño , Electrocorticografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Adulto Joven
20.
PLoS One ; 15(11): e0241818, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33152041

RESUMEN

Currently no drugs are employed clinically to reverse the unconsciousness induced by general anesthetics. Our previous studies showed that caffeine, when given near the end of an anesthesia session, accelerated emergence from isoflurane anesthesia, likely caused by caffeine's ability to elevate intracellular cAMP levels and to block adenosine receptors. These earlier studies showed that caffeine did not rouse either rats or humans from deep anesthesia (≥ 1 minimum alveolar concentration, MAC). In this current crossover study, we examined whether caffeine reversed the unconsciousness produced by light anesthesia (< 1 MAC) in the continued presence of isoflurane. The primary endpoint of this study was to measure isoflurane levels at the time of recovery of righting reflex, which was a proxy for consciousness. Rats were deeply anesthetized with 2% isoflurane (~1.5 MAC) for 20 minutes. Subsequently, isoflurane was reduced to 1.2% for 10 minutes, then by 0.2% every 10 min; animals were monitored until the recovery of righting reflex occurred, in the continued presence of isoflurane. Respiration rate, heart rate and electroencephalogram (EEG) were monitored. Our results show that caffeine-treated rats recovered their righting reflex at a significantly higher inspired isoflurane concentration, corresponding to light anesthesia, than the same rats treated with saline (control). Respiration rate and heart rate increased initially after caffeine injection but were then unchanged for the rest of the anesthesia session. Deep anesthesia is correlated with burst suppression in EEG recordings. Our data showed that caffeine transiently reduced the burst suppression time produced by deep anesthesia, suggesting that caffeine altered neuronal circuit function but not to a point where it caused arousal. In contrast, under light anesthesia, caffeine shifted the EEG power to high frequency beta and gamma bands. These data suggest that caffeine may represent a clinically viable drug to reverse the unconsciousness produced by light anesthesia.


Asunto(s)
Anestésicos por Inhalación/administración & dosificación , Cafeína/administración & dosificación , Isoflurano/administración & dosificación , Reflejo de Enderezamiento/efectos de los fármacos , Periodo de Recuperación de la Anestesia , Anestesia General , Animales , Cafeína/farmacología , Estudios Cruzados , Electroencefalografía , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Modelos Animales , Ratas , Frecuencia Respiratoria/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA