Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mass Spectrom Rev ; 42(3): 984-1007, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-34558100

RESUMEN

Amylin (islet amyloid polypeptide [IAPP]) is a neuroendocrine hormone synthesized with insulin in the beta cells of pancreatic islets. The two hormones act in different ways: in fact insulin triggers glucose uptake in muscle and liver cells, removing glucose from the bloodstream and making it available for energy use and storage, while amylin regulates glucose homeostasis. Aside these positive physiological aspects, human amyloid polypeptide (hIAPP) readily forms amyloid in vitro. Amyloids are aggregates of proteins and in the human body amyloids are considered responsible of the development of various diseases. These aspects have been widely described and discussed in literature and to give a view of the highly complexity of this biochemical behavior the different physical, chemical, biological and medical aspects are shortly described in this review. It is strongly affected by the presence on metal ions, responsible for or inhibiting the formation of fibrils. Mass spectrometry resulted (and still results) to be a particularly powerful tool to obtain valid and effective experimental data to describe the hIAPP behavior. Aside classical approaches devoted to investigation on metal ion-hIAPP structures, which reflects on the identification of metal-protein interaction site(s) and of possible metal-induced conformational changes of the protein, interesting results have been obtained by ion mobility mass spectrometry, giving, on the basis of collisional cross-section data, information on both the oligomerization processes and the conformation changes. Laser ablation electrospray ionization-ion mobility spectrometry-mass spectrometry (LAESI-IMS-MS), allowed to obtain information on the binding stoichiometry, complex dissociation constant, and the oxidation state of the copper for the amylin-copper interaction. Alternatively to inorganic ions, small organic molecules have been tested by ESI-IMS-MS as inhibitor of amyloid assembly. Also in this case the obtained data demonstrate the validity of the ESI-IMS-MS approach as a high-throughput screen for inhibitors of amyloid assembly, providing valid information concerning the identity of the interacting species, the nature of binding and the effect of the ligand on protein aggregation. Effects of Cu2+ and Zn2+ ions in the degradation of human and murine IAPP by insulin-degrading enzyme were studied by liquid chromatography/mass spectrometry (LC/MS). The literature data show that mass spectrometry is a highly valid and effective tool in the study of the amylin behavior, so to individuate medical strategies to avoid the undesired formation of amyloids in in vivo conditions.


Asunto(s)
Insulinas , Polipéptido Amiloide de los Islotes Pancreáticos , Ratones , Humanos , Animales , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Cobre/química , Cobre/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Amiloide/química , Amiloide/metabolismo , Glucosa
2.
Cardiovasc Diabetol ; 23(1): 36, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245742

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) increases the risk of coronary heart disease (CHD) by 2-4 fold, and is associated with endothelial dysfunction, dyslipidaemia, insulin resistance, and chronic hyperglycaemia. The aim of this investigation was to assess, by a multimarker mass spectrometry approach, the predictive role of circulating proteins as biomarkers of cardiovascular damage progression associated with diabetes mellitus. METHODS: The study considered 34 patients with both T2DM and CHD, 31 patients with T2DM and without CHD, and 30 patients without diabetes with a diagnosis of CHD. Plasma samples of subjects were analysed through a multiplexed targeted liquid chromatography mass spectrometry (LC-MS)-based assay, namely Multiple Reaction Monitoring (MRM), allowing the simultaneous detection of peptides derived from a protein of interest. Gene Ontology (GO) Analysis was employed to identify enriched GO terms in the biological process, molecular function, or cellular component categories. Non-parametric multivariate methods were used to classify samples from patients and evaluate the relevance of the analysed proteins' panel. RESULTS: A total of 81 proteins were successfully quantified in the human plasma samples. Gene Ontology analysis assessed terms related to blood microparticles, extracellular exosomes and collagen-containing extracellular matrix. Preliminary evaluation using analysis of variance (ANOVA) of the differences in the proteomic profile among patient groups identified 13 out of the 81 proteins as significantly different. Multivariate analysis, including cluster analysis and principal component analysis, identified relevant grouping of the 13 proteins. The first main cluster comprises apolipoprotein C-III, apolipoprotein C-II, apolipoprotein A-IV, retinol-binding protein 4, lysozyme C and cystatin-C; the second one includes, albeit with sub-grouping, alpha 2 macroglobulin, afamin, kininogen 1, vitronectin, vitamin K-dependent protein S, complement factor B and mannan-binding lectin serine protease 2. Receiver operating characteristic (ROC) curves obtained with the 13 selected proteins using a nominal logistic regression indicated a significant overall distinction (p < 0.001) among the three groups of subjects, with area under the ROC curve (AUC) ranging 0.91-0.97, and sensitivity and specificity ranging from 85 to 100%. CONCLUSIONS: Targeted mass spectrometry approach indicated 13 multiple circulating proteins as possible biomarkers of cardiovascular damage progression associated with T2DM, with excellent classification results in terms of sensitivity and specificity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Proteómica/métodos , Biomarcadores , Péptidos , Proteínas Sanguíneas
3.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273224

RESUMEN

Immune checkpoints are crucial molecules for the maintenance of antitumor immune responses. The activation or inhibition of these molecules is dependent on the interactions between receptors and ligands; such interactions can provide inhibitory or stimulatory signals to the various components of the immune system. Over the last 10 years, the inhibition of immune checkpoints, such as cytotoxic T lymphocyte antigen-4, programmed cell death-1, and programmed cell death ligand-1, has taken a leading role in immune therapy. This relatively recent therapy regime is based on the use of checkpoint inhibitors, which enhance the immune response towards various forms of cancer. For a subset of patients with specific forms of cancer, these inhibitors can induce a durable response to therapy; however, the medium response rate to such therapy remains relatively poor. Recent research activities have demonstrated that the disease response to this highly promising therapy resembles the response of many forms of cancer to chemotherapy, where an encouraging initial response is followed by acquired resistance to treatment and progress of the disease. That said, these inhibitors are now used as single agents or in combination with chemotherapies as first or second lines of treatment for about 50 types of cancer. The prevailing opinion regarding immune therapy suggests that for this approach of therapy to deliver on its promise, a number of challenges have to be circumvented. These challenges include understanding the resistance mechanisms to immune checkpoint blockade, the identification of more efficient inhibitors, extending their therapeutic benefits to a wider audience of cancer patients, better management of immune-related adverse side effects, and, more urgently the identification of biomarkers, which would help treating oncologists in the identification of patients who are likely to respond positively to the immune therapies and, last but not least, the prices of therapy which can be afforded by the highest number of patients. Numerous studies have demonstrated that understanding the interaction between these checkpoints and the immune system is essential for the development of efficient checkpoint inhibitors and improved immune therapies. In the present text, we discuss some of these checkpoints, their inhibitors, and some works in which mass spectrometry-based proteomic analyses were applied.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Proteómica , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/inmunología , Proteómica/métodos , Animales , Inmunoterapia/métodos , Proteínas de Punto de Control Inmunitario/metabolismo
4.
Medicina (Kaunas) ; 60(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38399488

RESUMEN

Drug resistance remains one of the main causes of poor outcome in cancer therapy. It is also becoming evident that drug resistance to both chemotherapy and to antibiotics is driven by more than one mechanism. So far, there are at least eight recognized mechanisms behind such resistance. In this review, we choose to discuss one of these mechanisms, which is known to be partially driven by a class of transmembrane proteins known as ATP-binding cassette (ABC) transporters. In normal tissues, ABC transporters protect the cells from the toxic effects of xenobiotics, whereas in tumor cells, they reduce the intracellular concentrations of anticancer drugs, which ultimately leads to the emergence of multidrug resistance (MDR). A deeper understanding of the structures and the biology of these proteins is central to current efforts to circumvent resistance to both chemotherapy, targeted therapy, and antibiotics. Understanding the biology and the function of these proteins requires detailed structural and conformational information for this class of membrane proteins. For many years, such structural information has been mainly provided by X-ray crystallography and cryo-electron microscopy. More recently, mass spectrometry-based methods assumed an important role in the area of structural and conformational characterization of this class of proteins. The contribution of this technique to structural biology has been enhanced by its combination with liquid chromatography and ion mobility, as well as more refined labelling protocols and the use of more efficient fragmentation methods, which allow the detection and localization of labile post-translational modifications. In this review, we discuss the contribution of mass spectrometry to efforts to characterize some members of the ATP-binding cassette (ABC) proteins and why such a contribution is relevant to efforts to clarify the link between the overexpression of these proteins and the most widespread mechanism of chemoresistance.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Resistencia a Antineoplásicos , Microscopía por Crioelectrón , Proteínas de Neoplasias , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Transportadoras de Casetes de Unión a ATP , Antibacterianos/uso terapéutico , Adenosina Trifosfato/farmacología , Adenosina Trifosfato/uso terapéutico , Neoplasias/tratamiento farmacológico
5.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203351

RESUMEN

Metformin is the most prescribed glucose-lowering drug worldwide; globally, over 100 million patients are prescribed this drug annually. Some different action mechanisms have been proposed for this drug, but, surprisingly, no metabolite of metformin has ever been described. It was considered interesting to investigate the possible reaction of metformin with glucose following the Maillard reaction pattern. The reaction was first performed in in vitro conditions, showing the formation of two adducts that originated by the condensation of the two molecular species with the losses of one or two water molecules. Their structures were investigated by liquid chromatography coupled with mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS) and accurate mass measurements (HRMS). The species originated via the reaction of glucose and metformin and were called metformose and dehydrometformose, and some structural hypotheses were conducted. It is worth to emphasize that they were detected in urine samples from a diabetic patient treated with metformin and consequently they must be considered metabolites of the drug, which has never been identified before now. The glucose-related substructure of these compounds could reflect an improved transfer across cell membranes and, consequently, new hypotheses could be made about the biological targets of metformin.


Asunto(s)
Metformina , Humanos , Espectrometría de Masas en Tándem , Cromatografía Líquida con Espectrometría de Masas , Membrana Celular , Glucosa
6.
Medicina (Kaunas) ; 59(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36984613

RESUMEN

For over four decades, mass spectrometry-based methods have provided a wealth of information relevant to various challenges in the field of cancers research. These challenges included identification and validation of novel biomarkers for various diseases, in particular for various forms of cancer. These biomarkers serve various objectives including monitoring patient response to the various forms of therapy, differentiating subgroups of the same type of cancer, and providing proteomic data to complement datasets generated by genomic, epigenetic, and transcriptomic methods. The same proteomic data can be used to provide prognostic information and could guide scientists and medics to new and innovative targeted therapies The past decade has seen a rapid emergence of epigenetics as a major contributor to carcinogenesis. This development has given a fresh momentum to MS-based proteomics, which demonstrated to be an unrivalled tool for the analyses of protein post-translational modifications associated with chromatin modifications. In particular, high-resolution mass spectrometry has been recently used for systematic quantification of chromatin modifications. Data generated by this approach are central in the search for new therapies for various forms of cancer and will help in attempts to decipher antitumor drug resistance. To appreciate the contribution of mass spectrometry-based proteomics to biomarkers discovery and to our understanding of mechanisms behind the initiation and progression of various forms of cancer, a number of recent investigations are discussed. These investigations also include results provided by two-dimensional gel electrophoresis combined with mass spectrometry.


Asunto(s)
Neoplasias , Proteómica , Niño , Humanos , Proteómica/métodos , Espectrometría de Masas/métodos , Biomarcadores , Cromatina
7.
Medicina (Kaunas) ; 59(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37893440

RESUMEN

Mass spectrometry-based proteomics is a key player in research efforts to characterize aberrant epigenetic alterations, including histone post-translational modifications and DNA methylation. Data generated by this approach complements and enrich datasets generated by genomic, epigenetic and transcriptomics approaches. These combined datasets can provide much-needed information on various mechanisms responsible for drug resistance, the discovery and validation of potential biomarkers for different diseases, the identification of signaling pathways, and genes and enzymes to be targeted by future therapies. The increasing use of high-resolution, high-accuracy mass spectrometers combined with more refined protein labeling and enrichment procedures enhanced the role of this approach in the investigation of these epigenetic modifications. In this review, we discuss recent MS-based studies, which are contributing to current research efforts to understand certain mechanisms behind drug resistance to therapy. We also discuss how these MS-based analyses are contributing to biomarkers discovery and validation.


Asunto(s)
Histonas , Proteómica , Humanos , Proteómica/métodos , Histonas/metabolismo , Espectrometría de Masas/métodos , Biomarcadores , Resistencia a Medicamentos
8.
Mass Spectrom Rev ; 39(5-6): 553-573, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31930557

RESUMEN

In the study of natural products new strategies which favor a holistic approach, integrating the traditional reductionist methods usually employed, have been proposed. In this frame, the studies carried out by us in the last decade show that fingerprints, mainly obtained by electrospray ionization mass spectrometry (ESI-MS), lead to the characterization of natural extracts from different botanical species but also of phytotherapeutic products constituted by mixtures of extracts from different plants. Laser desorption ionization and matrix-assisted laser desorption ionization techniques were also employed and by the use of different matrices some complementary results were achieved. Results obtained by standard spectrophotometric and liquid chromatography methods were compared with those achieved by direct infusion of the extract in ESI-MS conditions, indicating an excellent agreement between the two approaches. The findings of these researches were considered in the frame of complex systems theory, investigating how relationships between a system's parts can give rise to its collective behaviors and how the system interacts and forms relationships with its environment. In this view, the peculiar pharmacological behavior of biologically active natural compounds can be justified by the occurrence of molecular interactions due to the high complexity of the natural matrix. Some of these interactions have been widely studied in the case of green tea extracts (GTEs) proving unequivocally the presence of caffeine/catechin complexes in GTE samples. The presence of bimolecular complexes has been observed also in the case of Ceylon tea and Mate extracts. These data indicate that the formation of complexes in natural extracts is a common behavior and their presence must be considered in the description of natural extracts and, consequently, in their biological activity. ©2020 John Wiley & Sons Ltd. Mass Spec Rev.


Asunto(s)
Preparaciones de Plantas/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Salud Holística , Humanos , Extractos Vegetales/análisis , Extractos Vegetales/química , Extractos Vegetales/farmacología , Preparaciones de Plantas/química , Preparaciones de Plantas/farmacología
9.
Mass Spectrom Rev ; 38(1): 112-146, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423209

RESUMEN

In the last decade, mass spectrometry has been widely employed in the study of diabetes. This was mainly due to the development of new, highly sensitive, and specific methods representing powerful tools to go deep into the biochemical and pathogenetic processes typical of the disease. The aim of this review is to give a panorama of the scientifically valid results obtained in this contest. The recent studies on glycation processes, in particular those devoted to the mechanism of production and to the reactivity of advanced glycation end products (AGEs, AGE peptides, glyoxal, methylglyoxal, dicarbonyl compounds) allowed to obtain a different view on short and long term complications of diabetes. These results have been employed in the research of effective markers and mass spectrometry represented a precious tool allowing the monitoring of diabetic nephropathy, cardiovascular complications, and gestational diabetes. The same approaches have been employed to monitor the non-insulinic diabetes pharmacological treatments, as well as in the discovery and characterization of antidiabetic agents from natural products. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 38:112-146, 2019.


Asunto(s)
Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Espectrometría de Masas/métodos , Secuencia de Aminoácidos , Animales , Biomarcadores/análisis , Biomarcadores/sangre , Biomarcadores/metabolismo , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/metabolismo , Complicaciones de la Diabetes/sangre , Complicaciones de la Diabetes/diagnóstico , Diabetes Mellitus/sangre , Diabetes Mellitus/diagnóstico , Productos Finales de Glicación Avanzada/análisis , Productos Finales de Glicación Avanzada/sangre , Glicosilación , Humanos , Espectrometría de Masas/instrumentación , Modelos Moleculares
10.
Ther Drug Monit ; 41(1): 1-10, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30422961

RESUMEN

Alternatively to the well-consolidated liquid chromatography coupled to tandem mass spectrometry approach used for the evaluation of anticancer drug concentrations in treated patients, new mass spectrometric methods have been proposed and tested recently. They exhibited faster analysis time and, at first sight, simpler instrumental approaches. However, results obtained by these methods require an in-depth evaluation, because of their strong dependence on the experimental set-up. In this short review, the quantification of irinotecan, sunitinib, and 6-α-hydroxy paclitaxel (the main metabolite of paclitaxel) by laser desorption ionization techniques (matrix-assisted laser desorption/ionization, nanostructure-assisted laser desorption/ionization, and surface-assisted laser desorption/ionization) is reported and discussed, showing the advantages but also the drawbacks of the methods. The matrix-assisted laser desorption/ionization approach led to the most reliable results, and the cross-validation for the quantitative analysis of irinotecan indicates that this method can be fruitfully used for therapeutic drug monitoring and pharmacokinetic studies. Another recently proposed technique, paper spray mass spectrometry, has been tested for the quantitative measurement of imatinib in plasma samples. Even if the approach is, at first sight, really simple, the parameterization of the analytical and instrumental aspects has required many efforts to reach satisfactory results. What it should be expected in the future is the evaluation of these methods, not only in scientific environments dedicated to instrument development, but also in clinical chemistry laboratories, to evaluate their effectiveness and to give new and valid tools for TDM and for other qualitative or quantitative measurements of biomedical interest.


Asunto(s)
Antineoplásicos/farmacocinética , Neoplasias/metabolismo , Espectrometría de Masas en Tándem/métodos , Antineoplásicos/uso terapéutico , Cromatografía Liquida/métodos , Monitoreo de Drogas/métodos , Humanos , Neoplasias/tratamiento farmacológico , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
11.
Arch Biochem Biophys ; 659: 66-74, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30266625

RESUMEN

BACKGROUND: Mitochondria play a role in type 1 diabetes (T1D) particularly in the treatment and prevention of disorder consequences. Due to their demonstrated role in diabetes pathology, mitochondrial proteins can be an interesting starting point to study candidate antigens in T1D. We investigated the role of relevant post-translational modifications (PTM) on a synthetic mitochondrial peptide as putative antigen. METHODS: The antibody response in T1D was evaluated by solid phase-ELISA using a collection of synthetic peptides bearing different PTMs. We investigated the role of lipoylation, phosphorylation, and glycosylation. The PTMs were introduced at position 173 of the mitochondrial pyruvate dehydrogenase E2 complex peptide PDC-E2(167-184) and at position 7 of a structure-based designed ß-turn peptide as an irrelevant sequence to investigate the role of the specific PDC-E2 peptide sequence. RESULTS: IgM titres in 31 T1D patients were higher than IgGs to all the synthetic PTM peptides. Results demonstrated the crucial role of lysine lipoamide, serine O-phosphorylation, and O-glycosylation into the PDC-E2(167-184) peptide sequence for IgM antibody recognition. CONCLUSIONS: Results highlight the importance of immune dysregulation in T1D, furthermore, if confirmed in a large number of patients, they will contribute to add novel diagnostic markers for the understanding the physiopathology of the disease.


Asunto(s)
Anticuerpos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Proteínas Mitocondriales/química , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Adulto , Diabetes Mellitus Tipo 1/metabolismo , Femenino , Glicosilación , Humanos , Masculino , Fosforilación , Estereoisomerismo , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química , Ácido Tióctico/metabolismo
12.
Rapid Commun Mass Spectrom ; 32(15): 1199-1206, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29740881

RESUMEN

RATIONALE: fac-[Re(CO)3 (PO)(X)]-type complexes (PO = chelated bidentate tertiary phosphine (1-), X = various neutral, mono-dentate ligands) represent a class of compounds that meets the synthetic criteria for the preparation of potential carbon monoxide (CO) release molecules (CORMs) for medicinal application. The aim of our investigation was to achieve qualitative information whether the nature of the ancillary X ligand might influence the release of CO. METHODS: The release of CO has been investigated by means of product ion spectrometry of electrospray ionization (ESI)-generated [M + H]+ species, produced by multiple collisional experiments, using an ion trap mass spectrometer. RESULTS: Tandem mass spectrometry applied to the protonated species [Re(CO)3 (PO)(X) + H]+ of seven complexes (those including X = OH2 (1), isonitrile (2, 3), imidazole (4), pyridine (5) and phosphine (6, 7)) shows initial loss of coordinated water (1) or pyridine (5), whereas the majority of investigated entries display initial, sequential release of CO groups. The energetics of CO release have been investigated by breakdown curves for selected collisionally activated decomposition processes involving CO, and compared with those involving X groups. CONCLUSIONS: The nature of the co-ligand X drives the primary loss in the MSn processes of [Re(CO)3 (PO)(X) + H]+ compounds. When X = solvent, the energetics of these decompositions follow the trend H2 O < MeOH < CO. In each case, loss of CO is a favored fragmentation route with associated energies following the trend: N-py ≤ P-phosphine < C-isonitrile. Overall, MSn pathways indicate that [Re(PO)] (Re with chelated PO phosphine) constitutes the residual moiety. This behavior indicates that the presence of a functionalized phosphine is essential for a sequential, controlled release of CO.

13.
J Nat Prod ; 81(11): 2338-2347, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30372064

RESUMEN

A hypothesis on the peculiar pharmacological behavior of biologically active natural compounds is based on the occurrence of molecular interactions originating from the high complexity of the natural matrix, following the rules of supramolecular chemistry. In this context, some investigations were performed to establish unequivocally the presence of caffeine/catechin complexes in green tea extracts (GTEs). 1H NMR spectroscopy was utilized to compare profiles from GTEs with caffeine/catechin mixtures in different molar ratios, showing that peaks related to caffeine in GTEs are generally upfield shifted compared to those of free caffeine. On the other hand, ESIMS experiments performed on GTE, by means of precursor ion scan and neutral loss scan experiments, proved unequivocally the presence of caffeine/catechin complexes. Further investigations were performed by an LC-MS method operating at high-resolution conditions. The reconstructed ion chromatograms of the exact mass ions corresponding to caffeine/catechin species have been obtained, showing the presence of complexes of caffeine with gallate-type catechins. Furthermore, this last approach evidenced the presence of the same complex with different structures, consequently exhibiting different retention times. Both MSE and product ion MS/MS methods confirm the nature of caffeine/catechin complexes of the detected ions, showing the formation of protonated caffeine.


Asunto(s)
Cafeína/análisis , Camellia sinensis/química , Catequina/análisis , Extractos Vegetales/química , Cafeína/química , Catequina/química , Cromatografía Liquida , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray
14.
Rapid Commun Mass Spectrom ; 31(2): 179-192, 2017 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-27806439

RESUMEN

RATIONALE: [Cu(P)4 ][BF4 ]-type complexes (P = tertiary phosphine) have shown significant antitumor activity. This biological property appears to be activated via formation of coordinative unsaturated [Cu(P)n ]+ species (n < 4), that may interact with various molecules starting from the solvent(s) in which they are dissolved. Aim of our study was to investigate the interaction of these species with different solvent mixtures. METHODS: The interaction has been investigated by electrospray ionization mass spectrometry, and the interaction products have been characterized by multiple collisional experiments, using an ion trap mass instrument. Density functional theory (DFT) calculation studies, using a meta-hybrid exchange correlation (xc) functional and an implicit solvent model, were employed to investigate the equilibrium distribution of species in solution. RESULTS: Depending on the nature of the solvent mixture and coordinated phosphine, three [Cu(P)4 ][BF4 ]-type complexes undergo dissociation with formation of [Cu(P)2 ]+ , [Cu(P)(solv)]+ and [Cu(solv)2 ]+ species (solv = solvent). Preferred collisional-induced fragmentation pathways provide qualitative information on the selectivity of [Cu(P)n ]+ for specific solvents and donor atoms. Formation free energies and equilibrium constants pertaining to [CuI (PTA)n ]+ , [CuI/II (solv)n ]m+ (n ≤ 4; m = 1, 2) and [CuI (PTA)2-k (sol)k ]+ (k = 1, 2) provide a comprehensive picture of equilibria in solution. CONCLUSIONS: Dimethyl sulfoxide (DMSO) and acetonitrile (MeCN) strongly affect [Cu(P)n ]+ assemblies producing mixed-ligand [Cu(P)(DMSO)]+ and [Cu(P)(MeCN)]+ species. Excess of both DMSO and MeCN solvents are able to fully displace coordinated phosphines giving [Cu(solv)2 ]+ -type adducts. The presence of phosphines in the native complex is mandatory to retain the reduced oxidation state of copper. Instead, the more labile [CuI (MeCN)4 ]+ complex dissolved in DMSO and MeCN displays a combination of Cu(I) and Cu(II) adducts. Copyright © 2016 John Wiley & Sons, Ltd.

15.
J Cell Physiol ; 231(4): 915-25, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26379225

RESUMEN

Early detection of colorectal cancer (CRC) remains a challenge. It has been highlighted that the pathological alterations within an organ and tissues might be reflected in serum or plasma proteomic/peptidic patterns. The aim of the study was to follow the changes in the plasma peptides associated to colorectal cancer progression by mass spectrometry. This study included 27 adenoma, 67 CRC (n = 33 I-II stage and n = 34 III-IV stage), 23 liver metastasis from CRC patients and 34 subjects disease-free as controls. For plasma peptides analysis, samples purification was performed on the Nanoporous Silica Chips technology followed by matrix-assisted laser desorption/ionisation-time of flight analysis. Since the high complexity of the obtained dataset, multivariate statistical analysis, and discriminant pattern recognition were performed for study groups classification. Forty-four of 88 ionic species were successfully identified as fragments of peptides and proteins physiologically circulating in the blood and belonging to immune and coagulation systems and inflammatory mediators. Many peptides clustered into sets of overlapping sequences with ladder-like truncation clearly associated to proteolytic processes of both endo- and exoproteases activity. Comparing to controls, a different median ion intensity of the group-type fragments distribution was observed. Moreover, the degradation pattern obtained by proteolytic cleavage was different into study groups. This pattern was specific and characteristic of each group: controls, colon tumour disease (including adenoma and CRC), and liver metastasis, revealing a role as biomarker in early diagnosis and prognosis. Our findings highlighted peculiar changes in protease activity characteristic of CRC progression from pre-cancer lesion to metastatic disease. J. Cell. Physiol. 231: 915-925, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Péptidos/sangre , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Análisis de Varianza , Femenino , Humanos , Masculino , Persona de Mediana Edad , Péptido Hidrolasas/metabolismo , Péptidos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
Rapid Commun Mass Spectrom ; 30(1): 151-60, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26661982

RESUMEN

RATIONALE: Clinical and forensic toxicology laboratories are challenged every day by the analytical aspects of the new psychoactive substances phenomenon. In this study we describe the analytical characterization of a new ketamine derivative, deschloroketamine (2-methylamino-2-phenylcyclohexanone), contained in seized powders. METHODS: The analytical techniques employed include gas chromatography/mass spectrometry (GC/MS), liquid chromatography/electrospray ionization coupled with Orbitrap high-resolution/MS (LC/ESI-HRMS), multistage MS (ESI-MS(n)), and NMR. The LC/ESI-HRMS analyses consisted of accurate mass measurements of MH(+) ions in full-scan mode; comparison of experimental and calculated MH(+) isotopic patterns; and examination of the isotopic fine structure (IFS) of the M + 1, M + 2, M + 3 isotopic peaks relative to the monoisotopic M + 0 peak. The collision-induced product ions of the MH(+) ions were studied by both HRMS and MS(n). (1)H and (13)C NMR measurements were carried out to confirm the chemical structure of the analyte. RESULTS: The EI mass spectra obtained by GC/MS analysis showed the presence of molecular ions at m/z 203, and main fragment ions at m/z 175, 174, 160, 147, 146, and 132. The application of LC/ESI-HRMS allowed us to obtain: the accurate mass of deschloroketamine MH(+) ions with a mass accuracy of 1.47 ppm; fully superimposable experimental and calculated MH(+) isotopic patterns, with a relative isotopic abundance value of 3.69 %; and the IFS of the M + 1, M + 2, M + 3 isotopic peaks completely in accordance with theoretical values. Examination of the product ions of MH(+), as well as the study of both (1)H and (13)C NMR spectra, enabled the full characterization of the molecular structure of deschloroketamine. CONCLUSIONS: The combination of the employed analytical techniques allowed the characterization of the seized psychoactive substance, in spite of the lack of a reference standard. Deschloroketamine is a ketamine analogue considered to be more potent and longer lasting than ketamine, and this paper is probably the first to report on its analytical characterization.


Asunto(s)
Drogas de Diseño/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Ketamina/análogos & derivados , Ketamina/química , Cromatografía Liquida/métodos , Drogas de Diseño/análisis , Ketamina/análisis , Espectroscopía de Resonancia Magnética
17.
Rapid Commun Mass Spectrom ; 30(3): 423-32, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26754136

RESUMEN

RATIONALE: A series of drug plasma stability experiments were carried out to evaluate the bioavailability of three multidrug resistance inhibitors. The studied compounds are positional isomers; therefore, a chromatographic separation or taking advantage of specific collisionally activated decomposition pathways, obtained by tandem mass spectrometry (MS/MS) experiments, is necessary in order to resolve them. METHODS: A method was developed for quantitative determination of the analytes in plasma using liquid chromatography (LC) coupled with a triple quadrupole mass spectrometer operating in MS/MS mode. Different collisional approaches were employed based on the potentiality of a triple quadrupole system. Aside from the classical product ion spectroscopy, energy-resolved MS/MS experiments and a post-processing mathematical algorithm tool (LEDA) were used to distinguish among different kinds of inhibitors present in the sample batch. RESULTS: The developed LC/MS/MS method showed precision between 1.8-7.9%, accuracy ranging from 92.8 to 99.9% and limit of detection (LOD) values in the range 1.0-1.4 ng mL(-1) for all the analytes. The evaluation of matrix effects demonstrated that the sample preparation procedure did not affect the ionization efficiency or recovery (matrix effects and recovery larger than 88%). Finally, the LEDA tool was able to differentiate among the isomers, ensuring their proper monitoring. CONCLUSIONS: The proposed LC/MS/MS method was suitable for evaluating the stability of the analytes in plasma samples, although small concentration variations occurred. Furthermore, the investigation on the energetics of fragmentation pathways allowed the better product ions and optimal abundance ratios to be selected for LEDA application into a multi-component analysis. Copyright © 2015 John Wiley & Sons, Ltd.


Asunto(s)
Preparaciones Farmacéuticas/química , Espectrometría de Masas en Tándem/métodos , Resistencia a Múltiples Medicamentos , Estabilidad de Medicamentos , Humanos , Isomerismo , Límite de Detección , Preparaciones Farmacéuticas/sangre , Espectrometría de Masas en Tándem/instrumentación
18.
Anal Bioanal Chem ; 408(23): 6321-8, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27379390

RESUMEN

Colorectal cancer (CRC) is one of the most common tumors in developed countries. The five-year survival rate decreases depending on how advanced the CRC is when first diagnosed. Screening has been proven to greatly reduce mortality from colorectal cancer, but an ideal screening tool is far from being established. Here, we aimed to discover and validate early CRC biomarkers by means of an untargeted/targeted metabolomic approach. A preliminary untargeted analysis of plasma lipids performed on a small patient cohort (30 plasma samples) revealed some alterations that occurred in the presence of this tumor. In particular, medium-chain fatty acids with between six and twelve carbon atoms (C6-C12) were found to be the lipid class that showed the most marked changes upon the development of CRC. In order to evaluate the utility of this lipid class as diagnostic CRC biomarkers, a further study based on a wider cohort of patients (117 plasma samples) was performed. Using a targeted approach, these fatty acids were quantified in plasma samples by means of fast gas chromatography coupled to a time-of-flight analyzer. Plasma samples from patients with CRCs at different tumor stages were analyzed and compared to those from healthy subjects, ulcerative colitis patients, high-grade dysplasia adenoma patients, and breast cancer patients in order to test the specificity and sensitivity of these possible biomarkers. Results revealed significant differences among the considered groups in terms of their C6, C8, C10, and C12 fatty acid plasma concentrations. In particular, receiver operating characteristic (ROC) curves obtained for the C10 fatty acid gave an area under the curve of 0.8195 along with a sensitivity of 87.8 % and a specificity of 80 %, strongly suggesting that it could be a valuable early diagnostic biomarker of CRC.


Asunto(s)
Neoplasias Colorrectales/sangre , Ácidos Decanoicos/sangre , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Estudios de Cohortes , Neoplasias Colorrectales/diagnóstico , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Límite de Detección , Masculino , Persona de Mediana Edad
19.
Anal Bioanal Chem ; 408(19): 5369-77, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27235158

RESUMEN

Irinotecan is a widely used antineoplastic drug, mostly employed for the treatment of colorectal cancer. This drug is a feasible candidate for therapeutic drug monitoring due to the presence of a wide inter-individual variability in the pharmacokinetic and pharmacodynamic parameters. In order to determine the drug concentration during the administration protocol, we developed a quantitative MALDI-MS method using CHCA as MALDI matrix. Here, we demonstrate that MALDI-TOF can be applied in a routine setting for therapeutic drug monitoring in humans offering quick and accurate results. To reach this aim, we cross validated, according to FDA and EMA guidelines, the MALDI-TOF method in comparison with a standard LC-MS/MS method, applying it for the quantification of 108 patients' plasma samples from a clinical trial. Standard curves for irinotecan were linear (R (2) ≥ 0.9842) over the concentration ranges between 300 and 10,000 ng/mL and showed good back-calculated accuracy and precision. Intra- and inter-day precision and accuracy, determined on three quality control levels were always <12.8 % and between 90.1 and 106.9 %, respectively. The cross-validation procedure showed a good reproducibility between the two methods, the percentage differences within 20 % in more than 70 % of the total amount of clinical samples analysed.


Asunto(s)
Camptotecina/análogos & derivados , Neoplasias Colorrectales/sangre , Monitoreo de Drogas/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Algoritmos , Antineoplásicos/administración & dosificación , Antineoplásicos/sangre , Antineoplásicos/farmacocinética , Camptotecina/administración & dosificación , Camptotecina/sangre , Camptotecina/farmacocinética , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Irinotecán , Tasa de Depuración Metabólica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Eur J Mass Spectrom (Chichester) ; 22(5): 275-287, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27882894

RESUMEN

Tetrahedral [Cu(P)4][BF4]-type complexes (P = tertiary phosphine) are a class of monopositively charged compounds that have shown notable antitumor activity in both in vitro and in vivo tests. This biological property appears to be related to the peculiar physicochemical characteristics of these compounds. Although thermodynamically stable, they are labile at micromolar concentrations. Such a behavior allows the Cu(I) ion in [Cu(P)n]+ assemblies (n < 4) to interact with surrounding molecules, including the rich peptide/protein environment that metal complexes have to face in the physiological milieu on the way to tumor cells. The scope of this investigation was to study the interaction products that originate from the treatment in water/methanol mixtures of representative phosphino Cu(I) compounds with an excess of individual amino acids (AAs) selected on the basis of the donor atom likely involved in metal coordination (i.e. O-glycine, S-methionine and N-histidine). These interactions have been investigated in electrospray ionization mass spectrometry (ESI-MS), mainly in the positive ion mode [ESI(+)MS], and the interaction products have been characterized by sequential collisional experiments, performed by an ion trap instrument. Histidine and methionine, but not glycine, were able to mine Cu(I) from [Cu(P)n]+ assemblies through the formation of mixed [CuI(P)(AA)]+ and eventually [CuI(AA)2]+ adducts. The ability to substitute phosphine(s) by AAs and the strongest affinity for Cu(I) was proved by the study of the energetics of collisional-induced decomposition (CID) reactions [CuI(P)(AA)]+ → CuI(AA) + P]+. Among the investigated AAs, histidine displayed the strongest affinity for Cu(I). Transchelation of Cu(I) was similarly observed when [Cu(P)n]+ species were treated with the model tripeptide GlyGlyHis (GGH), the most investigated member of the amino terminal Cu(II) and Ni(II) (ATCUN) peptide family. GGH was able to form robust metal adducts not only with Cu(II) and the related divalent Zn(II) and Ni(II) ions, but also with monovalent ions, including Cu(I) and Ag(I). CID pathways of [CuI(GGH)]+ and [AgI(GGH)]+ were qualitatively superimposable and proceeded through losses of neutral fragments. Similar losses of neutral fragments were observed from [ZnII(GGH)] and [NiII(GGH)]. CID pathways of [CuII(GGH)]-/+ adducts instead took place mainly through intramolecular electron-transfer reactions comprising the reduction of Cu(II) to Cu(I) and the formation of fragment radical cations.


Asunto(s)
Aminoácidos/química , Cobre/química , Citotoxinas/química , Péptidos/química , Fosfinas/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Aminoácidos/análisis , Sitios de Unión , Cobre/análisis , Citotoxinas/análisis , Péptidos/análisis , Fosfinas/análisis , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA