Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Pediatr Res ; 75(3): 389-94, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24346111

RESUMEN

BACKGROUND: Cerebellar hypoplasia is a common problem in preterm infants and infants suffering from intraventricular hemorrhage (IVH). To evaluate the effects of IVH on cerebellar growth and development, we used a neonatal rabbit model of systemic glycerol to produce IVH. METHODS: New Zealand White rabbit kits were surgically delivered 2 d preterm and treated with intraperitoneal glycerol (3.25-6.5 g/kg). Controls were born at term. IVH was documented by ultrasonography. Brain volumes determined by magnetic resonance imaging, cerebellar foliation, proliferation (Ki-67), and Purkinje cell density were assessed at 2 wk of life. Tissue glycerol and glutathione concentrations were measured. RESULTS: Glycerol increased IVH, subarachnoid hemorrhages, and mortality in a dose-dependent manner. Total cerebellar volumes, cerebellar foliation, and cerebellar proliferation were decreased in a dose-dependent manner. Glycerol accumulated rapidly in blood, brain, and liver and was associated with increased glutathione concentration. All of these results were independent of IVH status. CONCLUSION: Cerebellar hypoplasia was induced after glycerol administration in a dose-dependent manner. Given the rapid tissue accumulation of glycerol, dose-dependent decrease in brain growth, and lack of IVH effect on measured outcomes, we question the validity of this model because glycerol toxicity cannot be ruled out. A better physiological model of IVH is needed.


Asunto(s)
Animales Recién Nacidos/crecimiento & desarrollo , Cerebelo/anomalías , Glicerol/farmacología , Ventrículos Cardíacos/patología , Hemorragia/complicaciones , Malformaciones del Sistema Nervioso/etiología , Conejos/crecimiento & desarrollo , Animales , Animales Recién Nacidos/sangre , Estudios de Casos y Controles , Cerebelo/patología , Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/patología , Relación Dosis-Respuesta a Droga , Glicerol/administración & dosificación , Glicerol/sangre , Hemorragia/inducido químicamente , Hemorragia/diagnóstico por imagen , Hemorragia/patología , Inyecciones Intraperitoneales , Imagen por Resonancia Magnética , Malformaciones del Sistema Nervioso/patología , Conejos/sangre , Factores de Tiempo , Ultrasonografía
2.
Dev Neurosci ; 35(6): 491-503, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24192275

RESUMEN

BACKGROUND: Up to 65% of untreated infants suffering from moderate to severe hypoxic-ischemic encephalopathy (HIE) are at risk of death or major disability. Therapeutic hypothermia (HT) reduces this risk to approximately 50% (number needed to treat: 7-9). Erythropoietin (Epo) is a neuroprotective treatment that is promising as an adjunctive therapy to decrease HIE-induced injury because Epo decreases apoptosis, inflammation, and oxidative injury and promotes glial cell survival and angiogenesis. We hypothesized that HT and concurrent Epo will be safe and effective, improve survival, and reduce moderate-severe cerebral palsy (CP) in a term nonhuman primate model of perinatal asphyxia. METHODOLOGY: Thirty-five Macaca nemestrina were delivered after 15-18 min of umbilical cord occlusion (UCO) and randomized to saline (n = 14), HT only (n = 9), or HT+Epo (n = 12). There were 12 unasphyxiated controls. Epo (3,500 U/kg × 1 dose followed by 3 doses of 2,500 U/kg, or Epo 1,000 U/kg/day × 4 doses) was given on days 1, 2, 3, and 7. Timed blood samples were collected to measure plasma Epo concentrations. Animals underwent MRI/MRS and diffusion tensor imaging (DTI) at <72 h of age and again at 9 months. A battery of weekly developmental assessments was performed. RESULTS: UCO resulted in death or moderate-severe CP in 43% of saline-, 44% of HT-, and 0% of HT+Epo-treated animals. Compared to non-UCO control animals, UCO animals exhibit poor weight gain, behavioral impairment, poor cerebellar growth, and abnormal brain DTI. Compared to UCO saline, UCO HT+Epo improved motor and cognitive responses, cerebellar growth, and DTI measures and produced a death/disability relative risk reduction of 0.911 (95% CI -0.429 to 0.994), an absolute risk reduction of 0.395 (95% CI 0.072-0.635), and a number needed to treat of 2 (95% CI 2-14). The effects of HT+Epo on DTI included an improved mode of anisotropy, fractional anisotropy, relative anisotropy, and volume ratio as compared to UCO saline-treated infants. No adverse drug reactions were noted in animals receiving Epo, and there were no hematology, liver, or kidney laboratory effects. CONCLUSIONS/SIGNIFICANCE: HT+Epo treatment improved outcomes in nonhuman primates exposed to UCO. Adjunctive use of Epo combined with HT may improve the outcomes of term human infants with HIE, and clinical trials are warranted.


Asunto(s)
Asfixia/tratamiento farmacológico , Eritropoyetina/uso terapéutico , Hipotermia/metabolismo , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Animales , Asfixia/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Epoetina alfa , Humanos , Hipoxia-Isquemia Encefálica/metabolismo , Lactante , Macaca nemestrina , Proteínas Recombinantes/uso terapéutico , Resultado del Tratamiento
3.
bioRxiv ; 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36798230

RESUMEN

Over the past decade, survival rates for extremely low gestational age neonates (ELGANs; <28 weeks gestation) has markedly improved. Unfortunately, a significant proportion of ELGANs will suffer from neurodevelopmental dysfunction. Cerebellar hemorrhagic injury (CHI) has been increasingly recognized in the ELGANs population and may contribute to neurologic dysfunction; however, the underlying mechanisms are poorly understood. To address this gap in knowledge, we developed a novel model of early isolated posterior fossa subarachnoid hemorrhage (SAH) in neonatal mice and investigated both acute and long-term effects. Following SAH on postnatal day 6 (P6), we found significant decreased levels of proliferation with the external granular layer (EGL), thinning of the EGL, decreased Purkinje cell (PC) density, and increased Bergmann glial (BG) fiber crossings at P8. At P42, CHI resulted in decreased PC density, decreased molecular layer interneuron (MLI) density, and increased BG fiber crossings. Results from both Rotarod and inverted screen assays did not demonstrate significant effects on motor strength or learning at P35-38. Treatment with the anti-inflammatory drug Ketoprofen did not significantly alter our findings after CHI, suggesting that treatment of neuro-inflammation does not provide significant neuroprotection post CHI. Further studies are required to fully elucidate the mechanisms through which CHI disrupts cerebellar developmental programming in order to develop therapeutic strategies for neuroprotection in ELGANs.

4.
Front Mol Neurosci ; 16: 1161086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187957

RESUMEN

Over the past decade, survival rates for extremely low gestational age neonates (ELGANs; <28 weeks gestation) has markedly improved. Unfortunately, a significant proportion of ELGANs will suffer from neurodevelopmental dysfunction. Cerebellar hemorrhagic injury (CHI) has been increasingly recognized in the ELGANs population and may contribute to neurologic dysfunction; however, the underlying mechanisms are poorly understood. To address this gap in knowledge, we developed a novel model of early isolated posterior fossa subarachnoid hemorrhage (SAH) in neonatal mice and investigated both acute and long-term effects. Following SAH on postnatal day 6 (P6), we found significant decreased levels of proliferation with the external granular layer (EGL), thinning of the EGL, decreased Purkinje cell (PC) density, and increased Bergmann glial (BG) fiber crossings at P8. At P42, CHI resulted in decreased PC density, decreased molecular layer interneuron (MLI) density, and increased BG fiber crossings. Results from both Rotarod and inverted screen assays did not demonstrate significant effects on motor strength or learning at P35-38. Treatment with the anti-inflammatory drug Ketoprofen did not significantly alter our findings after CHI, suggesting that treatment of neuro-inflammation does not provide significant neuroprotection post CHI. Further studies are required to fully elucidate the mechanisms through which CHI disrupts cerebellar developmental programming in order to develop therapeutic strategies for neuroprotection in ELGANs.

5.
J Neurosci Res ; 90(1): 307-14, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21971612

RESUMEN

Morphine is frequently used as an analgesic and sedative in preterm infants. Adult rats exposed to morphine have an altered hippocampal neurochemical profile and decreased neurogenesis in the dentate gyrus of the hippocampus. To evaluate whether neonatal rats are similarly affected, rat pups were injected twice daily with 2 mg/kg morphine or normal saline from postnatal days 3 to 7. On postnatal day 8, the hippocampal neurochemical profile was determined using in vivo (1)H NMR spectroscopy. The mRNA and protein concentrations of specific analytes were measured in hippocampus, and cell division in dentate gyrus was assessed using bromodeoxyuridine. The concentrations of γ-aminobutyric acid (GABA), taurine, and myo-insotol were decreased, whereas concentrations of glutathione, phosphoethanolamine, and choline-containing compounds were increased in morphine-exposed rats relative to control rats. Morphine decreased glutamic acid decarboxylase enzyme levels and myelin basic protein mRNA expression in the hippocampus. Bromodeoxyuridine labeling in the dentate gyrus was decreased by 60-70% in morphine-exposed rats. These results suggest that recurrent morphine administration during brain development alters hippocampal structure.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Morfina/administración & dosificación , Animales , Animales Recién Nacidos , Peso Corporal/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Bromodesoxiuridina/metabolismo , Muerte Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Femenino , Glutamato Descarboxilasa/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Masculino , Tamaño de los Órganos/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Protones , Ratas , Ratas Sprague-Dawley
6.
Brain Sci ; 11(10)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34679424

RESUMEN

We aimed to evaluate diffusion tensor imaging (DTI) in infants born extremely preterm, to determine the effect of erythropoietin (Epo) on DTI, and to correlate DTI with neurodevelopmental outcomes at 2 years of age for infants in the Preterm Erythropoietin Neuroprotection (PENUT) Trial. Infants who underwent MRI with DTI at 36 weeks postmenstrual age were included. Neurodevelopmental outcomes were evaluated by Bayley Scales of Infant and Toddler Development (BSID-III). Generalized linear models were used to assess the association between DTI parameters and treatment group, and then with neurodevelopmental outcomes. A total of 101 placebo- and 93 Epo-treated infants underwent MRI. DTI white matter mean diffusivity (MD) was lower in placebo- compared to Epo-treated infants in the cingulate and occipital regions, and occipital white matter fractional isotropy (FA) was lower in infants born at 24-25 weeks vs. 26-27 weeks. These values were not associated with lower BSID-III scores. Certain decreases in clustering coefficients tended to have lower BSID-III scores. Consistent with the PENUT Trial findings, there was no effect on long-term neurodevelopment in Epo-treated infants even in the presence of microstructural changes identified by DTI.

8.
Methods Mol Biol ; 982: 113-26, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23456865

RESUMEN

Prematurity and perinatal hypoxia-ischemia are common problems that result in significant neurodevelopmental morbidity and high mortality worldwide. The Vannucci model of unilateral brain injury was developed to model perinatal brain injury due to hypoxia-ischemia. Because the rodent brain is altricial, i.e., it develops postnatally, investigators can model either preterm or term brain injury by varying the age at which injury is induced. This model has allowed investigators to better understand developmental changes that occur in susceptibility of the brain to injury, evolution of brain injury over time, and response to potential neuroprotective treatments. The Vannucci model combines unilateral common carotid artery ligation with a hypoxic insult. This produces injury of the cerebral cortex, basal ganglia, hippocampus, and periventricular white matter ipsilateral to the ligated artery. Varying degrees of injury can be obtained by varying the depth and duration of the hypoxic insult. This chapter details one approach to the Vannucci model and also reviews the neuroprotective effects of erythropoietin (Epo), a neuroprotective treatment that has been extensively investigated using this model and others.


Asunto(s)
Lesiones Encefálicas/metabolismo , Eritropoyetina/metabolismo , Fármacos Neuroprotectores/metabolismo , Animales , Lesiones Encefálicas/patología , Modelos Animales de Enfermedad , Humanos , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA