Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 96(21): e0117822, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36226985

RESUMEN

Defective viral genomes (DVGs), which are generated by the viral polymerase in error during RNA replication, can trigger innate immunity and are implicated in altering the clinical outcome of infection. Here, we investigated the impact of DVGs on innate immunity and pathogenicity in a BALB/c mouse model of influenza virus infection. We generated stocks of influenza viruses containing the internal genes of an H5N1 virus that contained different levels of DVGs (indicated by different genome-to-PFU ratios). In lung epithelial cells, the high-DVG stock was immunostimulatory at early time points postinfection. DVGs were amplified during virus replication in myeloid immune cells and triggered proinflammatory cytokine production. In the mouse model, infection with the different virus stocks produced divergent outcomes. The high-DVG stock induced an early type I interferon (IFN) response that limited viral replication in the lungs, resulting in minimal weight loss. In contrast, the virus stock with low levels of DVGs replicated to high titers and amplified DVGs over time, resulting in elevated levels of proinflammatory cytokines accompanied by rapid weight loss and increased morbidity and mortality. Our results suggest that the timing and levels of immunostimulatory DVGs generated during infection contribute to H5N1 pathogenesis. IMPORTANCE Mammalian infections with highly pathogenic avian influenza viruses (HPAIVs) cause severe disease associated with excessive proinflammatory cytokine production. Aberrant replication products, such as defective viral genomes (DVGs), can stimulate the antiviral response, and cytokine induction is associated with their emergence in vivo. We show that stocks of a recombinant virus containing HPAIV internal genes that differ in their amounts of DVGs have vastly diverse outcomes in a mouse model. The high-DVG stock resulted in extremely mild disease due to suppression of viral replication. Conversely, the stock that contained low DVGs but rapidly accumulated DVGs over the course of infection led to severe disease. Therefore, the timing of DVG amplification and proinflammatory cytokine production impact disease outcome, and these findings demonstrate that not all DVG generation reduces viral virulence. This study also emphasizes the crucial requirement to examine the quality of virus preparations regarding DVG content to ensure reproducible research.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Ratones , Animales , Virus Defectuosos/genética , Virus de la Influenza A/genética , Ratones Endogámicos BALB C , Subtipo H5N1 del Virus de la Influenza A/genética , Genoma Viral , Replicación Viral/genética , Citocinas/genética , Pérdida de Peso/genética , Mamíferos/genética
2.
Immunology ; 165(3): 301-311, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34775601

RESUMEN

Optimal immunogenicity from nucleic acid vaccines requires a balance of antigen expression that effectively engages the host immune system without generating a cellular response that rapidly destroys cells producing the antigen and thereby limiting vaccine antigen expression. We investigated the role of the cellular response on the expression and antigenicity of DNA vaccines using a plasmid DNA construct expressing luciferase. Repeated intramuscular administration led to diminished luciferase expression, suggesting a role for immune-mediated clearance of expression. To investigate the role of cell trafficking, we used the sphingosine 1-phosphate receptor (S1PR) modulator, FTY720 (Fingolimod), which traps lymphocytes within the lymphoid tissues. When lymphocyte trafficking was blocked with FTY720, DNA transgene expression was maintained at a constant level for a significantly extended time period. Both continuous and staggered administration of FTY720 prolonged transgene expression. However, blocking lymphocyte egress during primary transgene administration did not result in an increase of transgene expression during secondary administration. Interestingly, there was a disconnect between transgene expression and immunogenicity, as increasing expression by this approach did not enhance the overall immune response. Furthermore, when FTY720 was administered alongside a DNA vaccine expressing the HIV gp140 envelope antigen, there was a significant reduction in both antigen-specific antibody and T-cell responses. This indicates that the developing antigen-specific cellular response clears DNA vaccine expression but requires access to the site of expression in order to develop an effective immune response.


Asunto(s)
Clorhidrato de Fingolimod , Vacunas de ADN , Clorhidrato de Fingolimod/farmacología , Factores Inmunológicos , Inmunosupresores , Glicoles de Propileno , Esfingosina , Linfocitos T , Vacunas de ADN/genética
3.
PLoS Pathog ; 15(2): e1007561, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30742688

RESUMEN

Paramyxoviruses can establish persistent infections both in vitro and in vivo, some of which lead to chronic disease. However, little is known about the molecular events that contribute to the establishment of persistent infections by RNA viruses. Using parainfluenza virus type 5 (PIV5) as a model we show that phosphorylation of the P protein, which is a key component of the viral RNA polymerase complex, determines whether or not viral transcription and replication becomes repressed at late times after infection. If the virus becomes repressed, persistence is established, but if not, the infected cells die. We found that single amino acid changes at various positions within the P protein switched the infection phenotype from lytic to persistent. Lytic variants replicated to higher titres in mice than persistent variants and caused greater infiltration of immune cells into infected lungs but were cleared more rapidly. We propose that during the acute phases of viral infection in vivo, lytic variants of PIV5 will be selected but, as the adaptive immune response develops, variants in which viral replication can be repressed will be selected, leading to the establishment of prolonged, persistent infections. We suggest that similar selection processes may operate for other RNA viruses.


Asunto(s)
Infecciones por Paramyxoviridae/genética , Paramyxoviridae/genética , Fosfoproteínas/genética , Proteínas Virales/genética , Células A549 , Sustitución de Aminoácidos/genética , Animales , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Virus de la Parainfluenza 5/genética , Virus de la Parainfluenza 5/patogenicidad , Paramyxoviridae/patogenicidad , Infecciones por Paramyxoviridae/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiología , Fosforilación , ARN Viral , Proteínas Virales/metabolismo , Proteínas Virales/fisiología , Replicación Viral
4.
J Immunol ; 201(9): 2744-2752, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30249811

RESUMEN

The combined inhibition of histone deacetylases (HDAC) and the proteins of the bromodomain and extraterminal (BET) family have recently shown therapeutic efficacy against melanoma, pancreatic ductal adenocarcinoma, testicular, and lymphoma cancers in murine studies. However, in such studies, the role of the immune system in therapeutically controlling these cancers has not been explored. We sought to investigate the effect of the HDAC inhibitor romidepsin (RMD) and the BET inhibitor IBET151, both singly and in combination, on vaccine-elicited immune responses. C57BL/6 mice were immunized with differing vaccine systems (adenoviral, protein) in prime-boost regimens under treatment with RMD, IBET151, or RMD+IBET151. The combined administration of RMD+IBET151 during vaccination resulted in a significant increase in the frequency and number of Ag-specific CD8+ T cells. RMD+IBET151 treatment significantly increased the frequency of vaccine-elicited IFN-γ+ splenic CD8+ T cells and conferred superior therapeutic and prophylactic protection against B16-OVA melanoma. RNA sequencing analyses revealed strong transcriptional similarity between RMD+IBET151 and untreated Ag-specific CD8+ T cells except in apoptosis and IL-6 signaling-related genes that were differentially expressed. Serum IL-6 was significantly increased in vivo following RMD+IBET151 treatment, with recombinant IL-6 administration replicating the effect of RMD+IBET151 treatment on vaccine-elicited CD8+ T cell responses. IL-6 sufficiency for protection was not assessed. Combined HDAC and BET inhibition resulted in greater vaccine-elicited CD8+ T cell responses and enhanced therapeutic and prophylactic protection against B16-OVA melanoma. Increased IL-6 production and the differential expression of pro- and anti-apoptotic genes following RMD+IBET151 treatment are likely contributors to the enhanced cancer vaccine responses.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Depsipéptidos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Inmunogenicidad Vacunal/inmunología , Melanoma Experimental/inmunología , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Femenino , Inhibidores de Histona Desacetilasas/farmacología , Interleucina-6/inmunología , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Receptores de Superficie Celular/antagonistas & inhibidores
7.
Mol Ther ; 26(2): 446-455, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29275847

RESUMEN

New vaccine platforms are needed to address the time gap between pathogen emergence and vaccine licensure. RNA-based vaccines are an attractive candidate for this role: they are safe, are produced cell free, and can be rapidly generated in response to pathogen emergence. Two RNA vaccine platforms are available: synthetic mRNA molecules encoding only the antigen of interest and self-amplifying RNA (sa-RNA). sa-RNA is virally derived and encodes both the antigen of interest and proteins enabling RNA vaccine replication. Both platforms have been shown to induce an immune response, but it is not clear which approach is optimal. In the current studies, we compared synthetic mRNA and sa-RNA expressing influenza virus hemagglutinin. Both platforms were protective, but equivalent levels of protection were achieved using 1.25 µg sa-RNA compared to 80 µg mRNA (64-fold less material). Having determined that sa-RNA was more effective than mRNA, we tested hemagglutinin from three strains of influenza H1N1, H3N2 (X31), and B (Massachusetts) as sa-RNA vaccines, and all protected against challenge infection. When sa-RNA was combined in a trivalent formulation, it protected against sequential H1N1 and H3N2 challenges. From this we conclude that sa-RNA is a promising platform for vaccines against viral diseases.


Asunto(s)
Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , ARN Viral/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunización , Inmunización Secundaria , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Ratones , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Viral/genética , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
8.
J Allergy Clin Immunol ; 142(3): 815-823.e6, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29310905

RESUMEN

BACKGROUND: Patients with chronic obstructive pulmonary disease (COPD) have increased susceptibility to respiratory tract infection, which contributes to disease progression and mortality, but mechanisms of increased susceptibility to infection remain unclear. OBJECTIVES: The aim of this study was to determine whether glucose concentrations were increased in airway samples (nasal lavage fluid, sputum, and bronchoalveolar lavage fluid) from patients with stable COPD and to determine the effects of viral infection on sputum glucose concentrations and how airway glucose concentrations relate to bacterial infection. METHODS: We measured glucose concentrations in airway samples collected from patients with stable COPD and smokers and nonsmokers with normal lung function. Glucose concentrations were measured in patients with experimentally induced COPD exacerbations, and these results were validated in patients with naturally acquired COPD exacerbations. Relationships between sputum glucose concentrations, inflammatory markers, and bacterial load were examined. RESULTS: Sputum glucose concentrations were significantly higher in patients with stable COPD compared with those in control subjects without COPD. In both experimental virus-induced and naturally acquired COPD exacerbations, sputum and nasal lavage fluid glucose concentrations were increased over baseline values. There were significant correlations between sputum glucose concentrations and sputum inflammatory markers, viral load, and bacterial load. Airway samples with higher glucose concentrations supported more Pseudomonas aeruginosa growth in vitro. CONCLUSIONS: Airway glucose concentrations are increased in patients with stable COPD and further increased during COPD exacerbations. Increased airway glucose concentrations might contribute to bacterial infections in both patients with stable and those with exacerbated COPD. This has important implications for the development of nonantibiotic therapeutic strategies for the prevention or treatment of bacterial infection in patients with COPD.


Asunto(s)
Glucosa/metabolismo , Infecciones por Pseudomonas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Infecciones del Sistema Respiratorio/metabolismo , Anciano , Carga Bacteriana , Líquido del Lavado Bronquioalveolar/química , Femenino , Humanos , Masculino , Persona de Mediana Edad , Líquido del Lavado Nasal/química , Infecciones por Picornaviridae/metabolismo , Infecciones por Picornaviridae/microbiología , Infecciones por Pseudomonas/microbiología , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Sistema Respiratorio/metabolismo , Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/microbiología , Fumar/metabolismo , Esputo/metabolismo , Carga Viral
9.
Immunology ; 151(4): 451-463, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28375554

RESUMEN

Age affects the immune response to vaccination, with individuals at the extremes of age responding poorly. The initial inflammatory response to antigenic materials shapes the subsequent adaptive response and so understanding is required about the effect of age on the profile of acute inflammatory mediators. In this study we measured the local and systemic inflammatory response after influenza vaccination or infection in neonatal, young adult and aged mice. Mice were immunized intramuscularly with inactivated influenza vaccine with and without the adjuvant MF59 and then challenged with H1N1 influenza. Age was the major factor affecting the inflammatory profile after vaccination: neonatal mice had more interleukin-1α (IL-1α), C-reactive protein (CRP) and granulocyte-macrophage colony-stimulating factor (GMCSF), young adults more tumour necrosis factor-α (TNF), and elderly mice more interleukin-1 receptor antagonist (IL-1RA), IL-2RA and interferon-γ-induced protein 10 (IP10). Notably the addition of MF59 induced IL-5, granulocyte colony-stimulating factor (G-CSF), Keratinocyte Chemotractant (KC) and monocyte chemoattractant protein 1 (MCP1) in all ages of animals and levels of these cytokines correlated with antibody responses. Age also had an impact on the efficacy of vaccination: neonatal and young adult mice were protected against challenge, but aged mice were not. There were striking differences in the localization of the cytokine response depending on the route of exposure: vaccination led to a high serum response whereas intranasal infection led to a low serum response but a high lung response. In conclusion, we demonstrate that age affects the inflammatory response to both influenza vaccination and infection. These age-induced differences need to be considered when developing vaccination strategies for different age groups.


Asunto(s)
Envejecimiento/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Pulmón/inmunología , Infecciones por Orthomyxoviridae/inmunología , Animales , Animales Recién Nacidos , Anticuerpos Antivirales/sangre , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Pulmón/virología , Ratones , Polisorbatos/administración & dosificación , Escualeno/administración & dosificación , Vacunación
10.
J Virol ; 90(9): 4735-4744, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26912628

RESUMEN

UNLABELLED: Neonates are at a high risk of infection, but vaccines are less effective in this age group; tailored adjuvants could potentially improve vaccine efficacy. Increased understanding about danger sensing by the innate immune system has led to the rational design of novel adjuvants. But differences in the neonatal innate immune response, for example, to Toll-like receptor (TLR) agonists, can reduce the efficacy of these adjuvants in early life. We therefore targeted alternative danger-sensing pathways, focusing on a range of compounds described as inflammasome agonists, including nanoscale silicon dioxide (NanoSiO2), calcium pyrophosphate dihydrate (CPPD) crystals, and muramyl tripeptide (M-Tri-DAP), for their ability to act as adjuvants.In vitro, these compounds induced an interleukin 1-beta (IL-1ß) response in the macrophage-like cell line THP1.In vivo, adult CB6F1 female mice were immunized intramuscularly with H1N1 influenza vaccine antigens in combination with NanoSiO2, CPPD, or M-Tri-DAP and subsequently challenged with H1N1 influenza virus (A/England/195/2009). The adjuvants boosted anti-hemagglutinin IgG and IgA antibody levels. Both adult and neonatal animals that received NanoSiO2-adjuvanted vaccines lost significantly less weight and recovered earlier after infection than control animals treated with antigen alone. Administration of the adjuvants led to an influx of activated inflammatory cells into the muscle but to little systemic inflammation measured by serum cytokine levels. Blocking IL-1ß or caspase 1 in vivo had little effect on NanoSiO2 adjuvant function, suggesting that it may work through pathways other than the inflammasome. Here we demonstrate that NanoSiO2 can act as an adjuvant and is effective in early life. IMPORTANCE: Vaccines can fail to protect the most at-risk populations, including the very young, the elderly, and the immunocompromised. There is a gap in neonatal immunity between the waning of maternal protection and routine infant immunization schedules, exacerbated by the failure of vaccines to work in the first months of life. One approach is to design age-specific formulations, with more-effective adjuvants, based on our understanding of the nature of the neonatal immune response. We chose to target the inflammasome, a molecular complex capable of detecting infection and cell damage and of triggering IL-1ß-driven inflammation. We screened a range of compounds in vitro and in vivo and identified three lead candidates: NanoSiO2, CPPD, and M-Tri-DAP. Of these, NanoSiO2 was the most effective and boosted the anti-influenza virus response in both adult and neonatal mice. This finding is important for the development of age-specific vaccines, designed using our knowledge of the neonatal immune response.


Asunto(s)
Adyuvantes Inmunológicos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Nanopartículas , Infecciones por Orthomyxoviridae/inmunología , Dióxido de Silicio , Animales , Animales Recién Nacidos , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Biomarcadores , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunización , Inflamasomas/metabolismo , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Infecciones por Orthomyxoviridae/prevención & control
11.
Cytokine ; 99: 287-296, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28826648

RESUMEN

Toll like receptor (TLR) ligands are important adjuvant candidates, causing antigen presenting cells to release inflammatory mediators, leading to the recruitment and activation of other leukocytes. The aim of this study was to define the response of human blood derived dendritic cells and macrophages to three TLR ligands acting singly or in combination, Poly I:C (TLR3), GLA (TLR4) and R848 (TLR7/8). Combinations of TLR agonists have been shown to have a synergistic effect on individual cytokines, here we look at the global inflammatory response measuring both cytokines and chemokines. Using a custom Luminex assay we saw dose responses in several mediators including CCL3 (MIP1α), IL-1α, IL-1ß, IL-12, CXCL10 (IP-10) and IL-6, all of which were significantly increased by the combination of R848 and GLA, even when low dose GLA was added. The synergistic effect was inhibited by specific MAP kinase inhibitors blocking the kinases p38 and JNK but not MEK1. Combining TLR adjuvants also had a synergistic effect on cytokine responses in human mucosal tissue explants. From this we conclude that the combination of R848 and GLA potentiates the inflammatory profile of antigen presenting cells. Since the pattern of inflammatory mediators released can alter the quality and quantity of the adaptive immune response to vaccination, this study informs vaccine adjuvant design.


Asunto(s)
Adyuvantes Farmacéuticos/farmacología , Citocinas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Receptores Toll-Like/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Biomarcadores/metabolismo , Quimiocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Humanos , Imidazoles/farmacología , Mediadores de Inflamación/metabolismo , Ligandos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores Toll-Like/agonistas
12.
J Immunol ; 194(10): 4836-45, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25870238

RESUMEN

The early life influenza disease burden calls for more effective vaccines to protect this vulnerable population. Influenza vaccines including the MF59 oil-in-water adjuvant induce higher, broader, and more persistent Ab responses in adults and particularly in young, through yet undefined mechanisms. In this study, we show that MF59 enhances adult murine IgG responses to influenza hemagglutinin (HA) by promoting a potent T follicular helper cells (TFH) response, which directly controls the magnitude of the germinal center (GC) B cell response. Remarkably, this enhancement of TFH and GC B cells is already fully functional in 3-wk-old infant mice, which were fully protected by HA/MF59 but not HA/PBS immunization against intranasal challenge with the homologous H1N1 (A/California/7/2009) strain. In 1-wk-old neonatal mice, MF59 recruits and activates APCs, efficiently induces CD4(+) effector T cells and primes for enhanced infant responses but induces few fully functional TFH cells, which are mostly follicular regulatory T cells, and poor GC and anti-HA responses. The B cell adjuvanticity of MF59 appears to be mediated by the potent induction of TFH cells which directly controls GC responses both in adult and early life, calling for studies assessing its capacity to enhance the efficacy of influenza immunization in young infants.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Vacunas contra la Influenza/inmunología , Polisorbatos/farmacología , Escualeno/farmacología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Animales Recién Nacidos , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Centro Germinal/inmunología , Inmunohistoquímica , Subtipo H1N1 del Virus de la Influenza A/inmunología , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Escualeno/inmunología
14.
J Virol ; 89(17): 8974-81, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26085154

RESUMEN

UNLABELLED: The small hydrophobic (SH) gene of respiratory syncytial virus (RSV), a major cause of infant hospitalization, encodes a viroporin of unknown function. SH gene knockout virus (RSV ΔSH) is partially attenuated in vivo, but not in vitro, suggesting that the SH protein may have an immunomodulatory role. RSV ΔSH has been tested as a live attenuated vaccine in humans and cattle, and here we demonstrate that it protected against viral rechallenge in mice. We compared the immune response to infection with RSV wild type and RSV ΔSH in vivo using BALB/c mice and in vitro using epithelial cells, neutrophils, and macrophages. Strikingly, the interleukin-1ß (IL-1ß) response to RSV ΔSH infection was greater than to wild-type RSV, in spite of a decreased viral load, and when IL-1ß was blocked in vivo, the viral load returned to wild-type levels. A significantly greater IL-1ß response to RSV ΔSH was also detected in vitro, with higher-magnitude responses in neutrophils and macrophages than in epithelial cells. Depleting macrophages (with clodronate liposome) and neutrophils (with anti-Ly6G/1A8) demonstrated the contribution of these cells to the IL-1ß response in vivo, the first demonstration of neutrophilic IL-1ß production in response to viral lung infection. In this study, we describe an increased IL-1ß response to RSV ΔSH, which may explain the attenuation in vivo and supports targeting the SH gene in live attenuated vaccines. IMPORTANCE: There is a pressing need for a vaccine for respiratory syncytial virus (RSV). A number of live attenuated RSV vaccine strains have been developed in which the small hydrophobic (SH) gene has been deleted, even though the function of the SH protein is unknown. The structure of the SH protein has recently been solved, showing it is a pore-forming protein (viroporin). Here, we demonstrate that the IL-1ß response to RSV ΔSH is greater in spite of a lower viral load, which contributes to the attenuation in vivo. This potentially suggests a novel method by which viruses can evade the host response. As all Pneumovirinae and some Paramyxovirinae carry similar SH genes, this new understanding may also enable the development of live attenuated vaccines for both RSV and other members of the Paramyxoviridae.


Asunto(s)
Interleucina-1beta/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/genética , Virus Sincitiales Respiratorios/inmunología , Proteínas Oncogénicas de Retroviridae/genética , Animales , Línea Celular , Células Epiteliales/inmunología , Células Epiteliales/virología , Femenino , Eliminación de Gen , Técnicas de Inactivación de Genes , Humanos , Interleucina-1beta/biosíntesis , Macrófagos/inmunología , Macrófagos/virología , Ratones , Ratones Endogámicos BALB C , Neutrófilos/inmunología , Neutrófilos/virología , Infecciones por Virus Sincitial Respiratorio/virología , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/crecimiento & desarrollo , Vacunación , Vacunas Atenuadas/inmunología , Carga Viral/inmunología
16.
Proc Natl Acad Sci U S A ; 110(14): 5576-81, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23509276

RESUMEN

Respiratory syncytial virus (RSV) infects most children in the first year of life and is a major single cause of hospitalization in infants and young children. There is no effective vaccine, and antibody generated by primary neonatal infection is poorly protective against reinfection even with antigenically homologous viral strains. Studying the immunological basis of these observations in neonatal mice, we found that antibody responses to infection were low and unaffected by CD4 depletion, in contrast with adult mice, which had stronger CD4-dependent antibody responses. Natural killer cell depletion or codepletion of CD4(+) and CD8(+) cells during neonatal RSV infection caused a striking increase in anti-RSV antibody titer. These cells are major sources of the cytokine IFN-γ, and blocking IFN-γ also enhanced RSV-specific antibody responses in neonates. In addition, infection with a recombinant RSV engineered to produce IFN-γ reduced antibody titer, confirming that IFN-γ plays a pivotal role in inhibition of antibody responses after neonatal infection. These unexpected findings show that the induction of a strong cellular immune response may limit antibody responses in early life and that vaccines that induce IFN-γ-secreting cells might, in some situations, be less protective than those that do not.


Asunto(s)
Animales Recién Nacidos , Anticuerpos Antivirales/inmunología , Interferón gamma/inmunología , Células Asesinas Naturales/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Linfocitos T/inmunología , Análisis de Varianza , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Embarazo
17.
J Virol ; 88(1): 604-11, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24173217

RESUMEN

Infection with respiratory syncytial virus (RSV) in neonatal mice leads to exacerbated disease if mice are reinfected with the same virus as adults. Both T cells and the host major histocompatibility complex genotype contribute to this phenomenon, but the part played by innate immunity has not been defined. Since macrophages and natural killer (NK) cells play key roles in regulating inflammation during RSV infection of adult mice, we studied the role of these cells in exacerbated inflammation following neonatal RSV sensitization/adult reinfection. Compared to mice undergoing primary infection as adults, neonatally sensitized mice showed enhanced airway fluid levels of interleukin-6 (IL-6), alpha interferon (IFN-α), CXCL1 (keratinocyte chemoattractant/KC), and tumor necrosis factor alpha (TNF-α) at 12 to 24 h after reinfection and IL-4, IL-5, IFN-γ, and CCL11 (eotaxin) at day 4 after reinfection. Weight loss during reinfection was accompanied by an initial influx of NK cells and granulocytes into the airways and lungs, followed by T cells. NK cell depletion during reinfection attenuated weight loss but did not alter T cell responses. Depletion of alveolar macrophages with inhaled clodronate liposomes reduced both NK and T cell numbers and attenuated weight loss. These findings indicate a hitherto unappreciated role for the innate immune response in governing the pathogenic recall responses to RSV infection.


Asunto(s)
Inmunidad Innata , Infecciones por Virus Sincitial Respiratorio/complicaciones , Animales , Animales Recién Nacidos , Secuencia de Bases , Células Cultivadas , Cartilla de ADN , Ratones , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio/inmunología
18.
Mucosal Immunol ; 17(2): 272-287, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382577

RESUMEN

Respiratory viral infections remain a major cause of hospitalization and death worldwide. Patients with respiratory infections often lose weight. While acute weight loss is speculated to be a tolerance mechanism to limit pathogen growth, severe weight loss following infection can cause quality of life deterioration. Despite the clinical relevance of respiratory infection-induced weight loss, its mechanism is not yet completely understood. We utilized a model of CD 8+ T cell-driven weight loss during respiratory syncytial virus (RSV) infection to dissect the immune regulation of post-infection weight loss. Supporting previous data, bulk RNA sequencing indicated significant enrichment of the interleukin (IL)-1 signaling pathway after RSV infection. Despite increased viral load, infection-associated weight loss was significantly reduced after IL-1α (but not IL-1ß) blockade. IL-1α depletion resulted in a reversal of the gut microbiota changes observed following RSV infection. Direct nasal instillation of IL-1α also caused weight loss. Of note, we detected IL-1α in the brain after either infection or nasal delivery. This was associated with changes in genes controlling appetite after RSV infection and corresponding changes in signaling molecules such as leptin and growth/differentiation factor 15. Together, these findings indicate a lung-brain-gut signaling axis for IL-1α in regulating weight loss after RSV infection.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Humanos , Animales , Ratones , Linfocitos T , Interleucina-1alfa , Calidad de Vida , Pulmón , Interleucina-1 , Pérdida de Peso , Ratones Endogámicos BALB C
19.
Discov Immunol ; 3(1): kyad030, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567290

RESUMEN

Influenza virus represents a challenge for traditional vaccine approaches due to its seasonal changes and potential for zoonotic transmission. Nucleic acid vaccines can overcome some of these challenges, especially through the inclusion of multiple antigens to increase the breadth of response. RNA vaccines were an important part of the response to the COVID-19 pandemic, but for future outbreaks DNA vaccines may have some advantages in terms of stability and manufacturing cost that warrant continuing investigation to fully realize their potential. Here, we investigate influenza virus vaccines made using a closed linear DNA platform, Doggybone™ DNA (dbDNA), produced by a rapid and scalable cell-free method. Influenza vaccines have mostly focussed on Haemagglutinin (HA), but the inclusion of Neuraminidase (NA) may provide additional protection. Here, we explored the potential of including NA in a dbDNA vaccine, looking at DNA optimization, mechanism and breadth of protection. We showed that DNA targeting sequences (DTS) improved immune responses against HA but not NA. We explored whether NA vaccine-induced protection against influenza virus infection was cell-mediated, but depletion of CD8 and NK cells made no impact, suggesting it was antibody-mediated. This is reflected in the restriction of protection to homologous strains of influenza virus. Importantly, we saw that including both HA and NA in a single combined vaccine did not dampen the immune response to either one. Overall, we show that linear dbDNA can induce an immune response against NA, which may offer increased protection in instances of HA mismatch where NA remains more conserved.

20.
Microbiol Spectr ; 12(4): e0306723, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38411056

RESUMEN

Prevention of respiratory syncytial virus (RSV) infection is now a global health priority, with a long-acting monoclonal antibody and two RSV vaccines recently licenced for clinical use. Most licenced and candidate interventions target the RSV fusion (RSV-F) protein. New interventions may be associated with the spread of mutations, reducing susceptibility to antibody neutralization in RSV-F. There is a need for ongoing longitudinal global surveillance of circulating RSV strains. To achieve this large-scale genomic surveillance, a reliable, high-throughput RSV sequencing assay is required. Here we report an improved high-throughput RSV whole-genome sequencing (WGS) assay performed directly on clinical samples without additional enrichment, using a 4-primer-pool, short-amplicon PCR-tiling approach that is suitable for short-read sequencing platforms. Using upper respiratory tract (URT) RSV-positive clinical samples obtained from a sentinel network of primary care providers and from hospital patients (29.7% and 70.2%, respectively; n = 1,037), collected over the period 2019 to 2023, this assay had a threshold of approximately 4 × 103 to 8 × 103 copies/mL (RSV-B and RSV-A sub-types, respectively) as the lowest amount of virus needed in the sample to achieve >96% of whole-genome coverage at a high-quality level. Using a Ct value of 31 as an empirical cut-off, the overall assay success rate of obtaining >90% genome coverage at a read depth minimum of 20 was 96.83% for clinical specimens successfully sequenced from a total of 1,071. The RSV WGS approach described in this study has increased sensitivity compared to previous approaches and can be applied to clinical specimens without the requirement for enrichment. The updated approach produces sequences of high quality consistently and cost-effectively, suitable for implementation to underpin national programs for the surveillance of RSV genomic variation. IMPORTANCE: In this paper, we report an improved high-throughput respiratory syncytial virus (RSV) whole-genome sequencing (WGS) assay performed directly on clinical samples, using a 4-primer-pool, short-amplicon PCR-tiling approach that is suitable for short-read sequencing platforms. The RSV WGS approach described in this study has increased sensitivity compared to previous approaches and can be applied to clinical specimens without the requirement for enrichment. The updated approach produces sequences of high quality consistently and cost-effectively, suitable for implementation to underpin national and global programs for the surveillance of RSV genomic variation. The quality of sequence produced is essential for preparedness for new interventions in monitoring antigenic escape, where a single point mutation might lead to a reduction in antibody binding effectiveness and neutralizing activity, or indeed in the monitoring of retaining susceptibility to neutralization by existing and new interventions.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Proteínas Virales de Fusión/genética , Virus Sincitial Respiratorio Humano/genética , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Anticuerpos Monoclonales , Secuenciación de Nucleótidos de Alto Rendimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA