Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Am J Respir Cell Mol Biol ; 48(5): 626-34, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23349050

RESUMEN

Elevated concentrations of CO2 (hypercapnia) lead to alveolar epithelial dysfunction by promoting Na,K-ATPase endocytosis. In the present report, we investigated whether the CO2/HCO3(-) activated soluble adenylyl cyclase (sAC) regulates this process. We found that hypercapnia increased the production of cyclic adenosine monophosphate (cAMP) and stimulated protein kinase A (PKA) activity via sAC, which was necessary for Na,K-ATPase endocytosis. During hypercapnia, cAMP was mainly produced in specific microdomains in the proximity of the plasma membrane, leading to PKA Type Iα activation. In alveolar epithelial cells exposed to high CO2 concentrations, PKA Type Iα regulated the time-dependent phosphorylation of the actin cytoskeleton component α-adducin at serine 726. Cells expressing small hairpin RNA for PKAc, dominant-negative PKA Type Iα, small interfering RNA for α-adducin, and α-adducin with serine 726 mutated to alanine prevented Na,K-ATPase endocytosis. In conclusion, we provide evidence for a new mechanism by which hypercapnia via sAC, cAMP, PKA Type Iα, and α-adducin regulates Na,K-ATPase endocytosis in alveolar epithelial cells.


Asunto(s)
Células Epiteliales Alveolares/enzimología , Dióxido de Carbono/farmacología , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/fisiología , Endocitosis , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adenilil Ciclasas/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/fisiología , Animales , Proteínas de Unión a Calmodulina/metabolismo , Línea Celular Tumoral , Membrana Celular/enzimología , AMP Cíclico/metabolismo , Humanos , Hipercapnia/enzimología , Fosforilación , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Ratas , Ratas Sprague-Dawley , Sistemas de Mensajero Secundario
2.
Am J Respir Cell Mol Biol ; 49(6): 892-901, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23885834

RESUMEN

Asbestos exposure results in pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully understood. Alveolar epithelial cell (AEC) apoptosis is important in the development of pulmonary fibrosis after exposure to an array of toxins, including asbestos. An endoplasmic reticulum (ER) stress response and mitochondria-regulated (intrinsic) apoptosis occur in AECs of patients with idiopathic pulmonary fibrosis, a disease with similarities to asbestosis. Asbestos induces AEC intrinsic apoptosis, but the role of the ER is unclear. The objective of this study was to determine whether asbestos causes an AEC ER stress response that promotes apoptosis. Using human A549 and rat primary isolated alveolar type II cells, amosite asbestos fibers increased AEC mRNA and protein expression of ER stress proteins involved in the unfolded protein response, such as inositol-requiring kinase (IRE) 1 and X-box-binding protein-1, as well as ER Ca²(2+) release ,as assessed by a FURA-2 assay. Eukarion-134, a superoxide dismutase/catalase mimetic, as well as overexpression of Bcl-XL in A549 cells each attenuate asbestos-induced AEC ER stress (IRE-1 and X-box-binding protein-1 protein expression; ER Ca²(2+) release) and apoptosis. Thapsigargin, a known ER stress inducer, augments AEC apoptosis, and eukarion-134 or Bcl-XL overexpression are protective. Finally, 4-phenylbutyric acid, a chemical chaperone that attenuates ER stress, blocks asbestos- and thapsigargin-induced AEC IRE-1 protein expression, but does not reduce ER Ca²(2+) release or apoptosis. These results show that asbestos triggers an AEC ER stress response and subsequent intrinsic apoptosis that is mediated in part by ER Ca²(2+) release.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/patología , Apoptosis/efectos de los fármacos , Asbesto Amosita/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Epiteliales Alveolares/fisiología , Animales , Antioxidantes/farmacología , Apoptosis/fisiología , Señalización del Calcio/efectos de los fármacos , Línea Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/fisiología , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Compuestos Organometálicos/farmacología , Fenilbutiratos/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Factores de Transcripción del Factor Regulador X , Salicilatos/farmacología , Tapsigargina/farmacología , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
3.
J Cell Sci ; 123(Pt 8): 1343-51, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20332111

RESUMEN

Stimulation of Na(+)/K(+)-ATPase translocation to the cell surface increases active Na(+) transport, which is the driving force of alveolar fluid reabsorption, a process necessary to keep the lungs free of edema and to allow normal gas exchange. Here, we provide evidence that insulin increases alveolar fluid reabsorption and Na(+)/K(+)-ATPase activity by increasing its translocation to the plasma membrane in alveolar epithelial cells. Insulin-induced Akt activation is necessary and sufficient to promote Na(+)/K(+)-ATPase translocation to the plasma membrane. Phosphorylation of AS160 by Akt is also required in this process, whereas inactivation of the Rab GTPase-activating protein domain of AS160 promotes partial Na(+)/K(+)-ATPase translocation in the absence of insulin. We found that Rab10 functions as a downstream target of AS160 in insulin-induced Na(+)/K(+)-ATPase translocation. Collectively, these results suggest that Akt plays a major role in Na(+)/K(+)-ATPase intracellular translocation and thus in alveolar fluid reabsorption.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/enzimología , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Insulina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Líquidos Corporales/efectos de los fármacos , Líquidos Corporales/enzimología , Bovinos , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Proteínas de Unión al GTP rab/metabolismo
4.
FASEB J ; 25(11): 3873-83, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21803859

RESUMEN

The physiological and pathophysiological implications of the expression of vimentin, a type III intermediate filament protein, in alveolar epithelial cells (AECs) are unknown. We provide data demonstrating that vimentin is regulated by TGFß1, a major cytokine released in response to acute lung injury and that vimentin is required for wound repair and remodeling of the alveolar epithelium. Quantitative real-time PCR shows a 16-fold induction of vimentin mRNA in TGFß1-treated transformed AECs. Luciferase assays identify a Smad-binding element in the 5' promoter of vimentin responsible for TGFß1-induced transcription. Notably, TGFß1 induces vimentin protein expression in AECs, which is associated with a 2.5-fold increase in cell motility, resulting in increased rates of migration and wound closure. These effects are independent of cell proliferation. TGFß1-mediated vimentin protein expression, cell migration, and wound closure are prevented by a pharmacological inhibitor of the Smad pathway and by expression of Ad-shRNA against vimentin. Conversely, overexpression of mEmerald-vimentin is sufficient for increased cell-migration and wound-closure rates. These results demonstrate that vimentin is required and sufficient for increased wound repair in an in vitro model of lung injury.


Asunto(s)
Vimentina/fisiología , Cicatrización de Heridas/fisiología , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Masculino , Alveolos Pulmonares/citología , Ratas , Proteínas Smad/fisiología , Factor de Crecimiento Transformador beta1/fisiología , Vimentina/biosíntesis
5.
J Clin Invest ; 118(2): 752-62, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18188452

RESUMEN

Hypercapnia (elevated CO(2) levels) occurs as a consequence of poor alveolar ventilation and impairs alveolar fluid reabsorption (AFR) by promoting Na,K-ATPase endocytosis. We studied the mechanisms regulating CO(2)-induced Na,K-ATPase endocytosis in alveolar epithelial cells (AECs) and alveolar epithelial dysfunction in rats. Elevated CO(2) levels caused a rapid activation of AMP-activated protein kinase (AMPK) in AECs, a key regulator of metabolic homeostasis. Activation of AMPK was mediated by a CO(2)-triggered increase in intracellular Ca(2+) concentration and Ca(2+)/calmodulin-dependent kinase kinase-beta (CaMKK-beta). Chelating intracellular Ca(2+) or abrogating CaMKK-beta function by gene silencing or chemical inhibition prevented the CO(2)-induced AMPK activation in AECs. Activation of AMPK or overexpression of constitutively active AMPK was sufficient to activate PKC-zeta and promote Na,K-ATPase endocytosis. Inhibition or downregulation of AMPK via adenoviral delivery of dominant-negative AMPK-alpha(1) prevented CO(2)-induced Na,K-ATPase endocytosis. The hypercapnia effects were independent of intracellular ROS. Exposure of rats to hypercapnia for up to 7 days caused a sustained decrease in AFR. Pretreatment with a beta-adrenergic agonist, isoproterenol, or a cAMP analog ameliorated the hypercapnia-induced impairment of AFR. Accordingly, we provide evidence that elevated CO(2) levels are sensed by AECs and that AMPK mediates CO(2)-induced Na,K-ATPase endocytosis and alveolar epithelial dysfunction, which can be prevented with beta-adrenergic agonists and cAMP.


Asunto(s)
Dióxido de Carbono/metabolismo , Endocitosis , Hipercapnia/enzimología , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteínas Quinasas Activadas por AMP , Agonistas Adrenérgicos beta/farmacología , Animales , Calcio/antagonistas & inhibidores , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/antagonistas & inhibidores , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Quelantes/farmacología , AMP Cíclico/farmacología , Endocitosis/efectos de los fármacos , Endocitosis/genética , Líquido Extracelular/metabolismo , Humanos , Isoproterenol/farmacología , Proteína Quinasa C/metabolismo , Alveolos Pulmonares/enzimología , Ratas , Ratas Sprague-Dawley , Mucosa Respiratoria/enzimología
6.
J Cell Sci ; 122(Pt 21): 3915-22, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19808891

RESUMEN

Stimulation of Na(+)/K(+)-ATPase activity in alveolar epithelial cells by cAMP involves its recruitment from intracellular compartments to the plasma membrane. Here, we studied the role of the actin molecular motor myosin-V in this process. We provide evidence that, in alveolar epithelial cells, cAMP promotes Na(+)/K(+)-ATPase recruitment to the plasma membrane by increasing the average speed of Na(+)/K(+)-ATPase-containing vesicles moving to the cell periphery. We found that three isoforms of myosin-V are expressed in alveolar epithelial cells; however, only myosin-Va and Vc colocalized with the Na(+)/K(+)-ATPase in intracellular membrane fractions. Overexpression of dominant-negative myosin-Va or knockdown with specific shRNA increased the average speed and distance traveled by the Na(+)/K(+)-ATPase-containing vesicles, as well as the Na(+)/K(+)-ATPase activity and protein abundance at the plasma membrane to similar levels as those observed with cAMP stimulation. These data show that myosin-Va has a role in restraining Na(+)/K(+)-ATPase-containing vesicles within intracellular pools and that this restrain is released after stimulation by cAMP allowing the recruitment of the Na(+)/K(+)-ATPase to the plasma membrane and thus increased activity.


Asunto(s)
Vesículas Citoplasmáticas/enzimología , Células Epiteliales/enzimología , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Alveolos Pulmonares/enzimología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Línea Celular , Membrana Celular/enzimología , Membrana Celular/genética , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Vesículas Citoplasmáticas/genética , Vesículas Citoplasmáticas/metabolismo , Células Epiteliales/metabolismo , Humanos , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , Ratas , ATPasa Intercambiadora de Sodio-Potasio/genética
7.
FASEB J ; 24(7): 2178-90, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20181940

RESUMEN

Elevated blood and tissue CO(2), or hypercapnia, is common in severe lung disease. Patients with hypercapnia often develop lung infections and have an increased risk of death following pneumonia. To explore whether hypercapnia interferes with host defense, we studied the effects of elevated P(CO2) on macrophage innate immune responses. In differentiated human THP-1 macrophages and human and mouse alveolar macrophages stimulated with lipopolysaccharide (LPS) and other Toll-like receptor ligands, hypercapnia inhibited expression of tumor necrosis factor and interleukin (IL)-6, nuclear factor (NF)-kappaB-dependent cytokines critical for antimicrobial host defense. Inhibition of IL-6 expression by hypercapnia was concentration dependent, rapid, reversible, and independent of extracellular and intracellular acidosis. In contrast, hypercapnia did not down-regulate IL-10 or interferon-beta, which do not require NF-kappaB. Notably, hypercapnia did not affect LPS-induced degradation of IkappaB alpha, nuclear translocation of RelA/p65, or activation of mitogen-activated protein kinases, but it did block IL-6 promoter-driven luciferase activity in mouse RAW 264.7 macrophages. Elevated P(CO2) also decreased phagocytosis of opsonized polystyrene beads and heat-killed bacteria in THP-1 and human alveolar macrophages. By interfering with essential innate immune functions in the macrophage, hypercapnia may cause a previously unrecognized defect in resistance to pulmonary infection in patients with advanced lung disease.


Asunto(s)
Dióxido de Carbono/farmacología , Hipercapnia/inmunología , Interleucina-6/antagonistas & inhibidores , Macrófagos Alveolares/inmunología , Fagocitosis/efectos de los fármacos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Citocinas/biosíntesis , Humanos , Inmunidad Innata/efectos de los fármacos , Interleucina-6/biosíntesis , Macrófagos Alveolares/efectos de los fármacos , Ratones , Factor de Necrosis Tumoral alfa/biosíntesis
8.
FASEB J ; 24(2): 374-82, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19773350

RESUMEN

Recruitment of the Na,K-ATPase to the plasma membrane of alveolar epithelial cells results in increased active Na(+) transport and fluid clearance in a process that requires an intact microtubule network. However, the microtubule motors involved in this process have not been identified. In the present report, we studied the role of kinesin-1, a plus-end microtubule molecular motor that has been implicated in the movement of organelles in the Na,K-ATPase traffic. We determined by confocal microscopy and biochemical assays that kinesin-1 and the Na,K-ATPase are present in the same membranous cellular compartment. Knockdown of kinesin-1 heavy chain (KHC) or the light chain-2 (KLC2), but not of the light chain-1 (KLC1), decreased the movement of Na,K-ATPase-containing vesicles when compared to sham siRNA-transfected cells (control group). Thus, a specific isoform of kinesin-1 is required for microtubule-dependent recruitment of Na,K-ATPase to the plasma membrane, which is of physiological significance.


Asunto(s)
Células Epiteliales Alveolares/fisiología , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Transporte de Proteínas/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Microtúbulos/metabolismo , Mitocondrias/fisiología , Vesículas Transportadoras/metabolismo
9.
Am J Respir Crit Care Med ; 179(2): 113-22, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18948426

RESUMEN

RATIONALE: Endothelin-1 (ET-1) is increased in patients with high-altitude pulmonary edema and acute respiratory distress syndrome, and these patients have decreased alveolar fluid reabsorption (AFR). OBJECTIVES: To determine whether ET-1 impairs AFR via activation of endothelial cells and nitric oxide (NO) generation. METHODS: Isolated perfused rat lung, transgenic rats deficient in ETB receptors, coincubation of lung human microvascular endothelial cells (HMVEC-L) with rat alveolar epithelial type II cells or A549 cells, ouabain-sensitive 86Rb+ uptake. MEASUREMENTS AND MAIN RESULTS: The ET-1-induced decrease in AFR was prevented by blocking the endothelin receptor ETB, but not ETA. Endothelial-epithelial cell interaction is required, as direct exposure of alveolar epithelial cells (AECs) to ET-1 did not affect Na,K-ATPase function or protein abundance at the plasma membrane, whereas coincubation of HMVEC-L and AECs with ET-1 decreased Na,K-ATPase activity and protein abundance at the plasma membrane. Exposing transgenic rats deficient in ETB receptors in the pulmonary vasculature (ET-B(-/-)) to ET-1 did not decrease AFR or Na,K-ATPase protein abundance at the plasma membrane of AECs. Exposing HMVEC-L to ET-1 led to increased NO, and the ET-1-induced down-regulation of Na,K-ATPase was prevented by the NO synthase inhibitor l-NAME, but not by a guanylate cyclase inhibitor. CONCLUSIONS: We provide the first evidence that ET-1, via an endothelial-epithelial interaction, leads to decreased AFR by a mechanism involving activation of endothelial ETB receptors and NO generation leading to alveolar epithelial Na,K-ATPase down-regulation in a cGMP-independent manner.


Asunto(s)
Endotelina-1/farmacología , Endotelio Vascular/metabolismo , Agua Pulmonar Extravascular/metabolismo , Óxido Nítrico/biosíntesis , Alveolos Pulmonares/metabolismo , Receptor de Endotelina B/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Técnicas In Vitro , Lesión Pulmonar/metabolismo , Masculino , Ratas , Ratas Transgénicas , Receptor de Endotelina A/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo
10.
Invest Clin ; 51(1): 53-63, 2010 Mar.
Artículo en Español | MEDLINE | ID: mdl-20815156

RESUMEN

Ischemia-reperfusion (IR) lung injury is a significant cause of morbidity and mortality in certain clinical scenarios that include transplantation, thromboendarterectomy and reexpansion injury of the lung. Edema of the contralateral lung after IR injury of one lung has been reported and this study was aimed to clarify the pathophysiology of this phenomenon. One-lung ischemia/hypoxia followed by reperfusion with either blood or an acellular plasma substitute was achieved in an isolated rabbit lung model by hilum clamping. After reperfusion, we studied the isolated effects of vasoconstriction and inflammation on contralateral lung injury by using papaverine or hydrocortisone as vasodilator and anti-inflammatory, respectively. We observed that IR of one lung induces edema of the contralateral lung. Absence of leukocytes and platelets in the perfusate or use of hydrocortisone completely inhibits IR injury. Moreover, papaverine suppresses edema of the contralateral, but not that of the reperfused lung. We concluded that IR of one lung produces edema in the contralateral lung that requires vasoconstriction of the latter.


Asunto(s)
Pulmón/irrigación sanguínea , Edema Pulmonar/etiología , Daño por Reperfusión/complicaciones , Daño por Reperfusión/fisiopatología , Vasoconstricción , Animales , Femenino , Técnicas In Vitro , Conejos
11.
Am J Physiol Lung Cell Mol Physiol ; 297(6): L1120-30, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19801454

RESUMEN

Patients with acute lung injury develop hypoxia, which may lead to lung dysfunction and aberrant tissue repair. Recent studies have suggested that epithelial-mesenchymal transition (EMT) contributes to pulmonary fibrosis. We sought to determine whether hypoxia induces EMT in alveolar epithelial cells (AEC). We found that hypoxia induced the expression of alpha-smooth muscle actin (alpha-SMA) and vimentin and decreased the expression of E-cadherin in transformed and primary human, rat, and mouse AEC, suggesting that hypoxia induces EMT in AEC. Both severe hypoxia and moderate hypoxia induced EMT. The reactive oxygen species (ROS) scavenger Euk-134 prevented hypoxia-induced EMT. Moreover, hypoxia-induced expression of alpha-SMA and vimentin was prevented in mitochondria-deficient rho(0) cells, which are incapable of ROS production during hypoxia. CoCl(2) and dimethyloxaloylglycine, two compounds that stabilize hypoxia-inducible factor (HIF)-alpha under normoxia, failed to induce alpha-SMA expression in AEC. Furthermore, overexpression of constitutively active HIF-1alpha did not induce alpha-SMA. However, loss of HIF-1alpha or HIF-2alpha abolished induction of alpha-SMA mRNA during hypoxia. Hypoxia increased the levels of transforming growth factor (TGF)-beta1, and preincubation of AEC with SB431542, an inhibitor of the TGF-beta1 type I receptor kinase, prevented the hypoxia-induced EMT, suggesting that the process was TGF-beta1 dependent. Furthermore, both ROS and HIF-alpha were necessary for hypoxia-induced TGF-beta1 upregulation. Accordingly, we have provided evidence that hypoxia induces EMT of AEC through mitochondrial ROS, HIF, and endogenous TGF-beta1 signaling.


Asunto(s)
Células Epiteliales/patología , Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/patología , Mesodermo/patología , Mitocondrias/metabolismo , Alveolos Pulmonares/patología , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular Transformada , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Hipoxia/metabolismo , Mesodermo/metabolismo , Ratones , Alveolos Pulmonares/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Factor de Crecimiento Transformador beta1/biosíntesis , Factor de Crecimiento Transformador beta1/genética
12.
Invest Clin ; 49(2): 181-93, 2008 Jun.
Artículo en Español | MEDLINE | ID: mdl-18717265

RESUMEN

Hypocapnia/alkalosis is a consequence of several lung and metabolic pathologies. The aim of this study was to determine whether the increase of fluid filtration rate (FFR) that occurs during Hypocapnia/alkalosis circumstances is determined by hypocapnia, alkalosis or both. 7 groups were formed (N=36) using isolated rabbit lungs. Group 1: Control (PCO2 6%, pH: 7.35-7.45); Group 2 (n=6): Hypocapnia/Alkalosis (CO2 1%, pH: 7.9); Group 3 (n=6): Hypocapnia/Normo-pH (CO2 1% pH 7.35-7.45), Group 4 (n=6) Normocapnia/Alcalosis (CO2 6%, pH: 7.9). Fenoterol, papaverine and hydrocortisone were added to Groups 5, 6 and 7 (n=4) respectively, all under Normocapnia/Alkalosis. FFR and Pulmonary Arterial Pressure (Pap) were considerably higher in group 2 than in control (FFR: 1.92g/min +/- 0.6 vs 0.0 g/min +/- 0.006). A strong influence exerted by pH was observed when Group 3 and group 4 were compared (FFR: 0.02 g/min +/- 0.009 vs 2.3 g/min +/- 0.9) and (Pap: 13.5 cmH2O +/- 1.4 vs 90 cmH2O +/- 15). A reduced effect was observed in groups 5 and 6 (papaverine and hydrocorisone) and a totally abolished effect was observed in group 7 (fenoterol) (FFR: 0.001 +/- 0.0003 mL/min and Pap: 14 +/- 0.8 cmH2O). Pulmonary edema induced by Hypocapnia/alkalosis is a consequence of alkalosis and not of hypocapnia. This effect could be due to inflammatory damage in the lung parenchyma and alkalosis-mediated vasoconstriction.


Asunto(s)
Alcalosis/fisiopatología , Transferencias de Fluidos Corporales/fisiología , Hipocapnia/fisiopatología , Pulmón/fisiopatología , Edema Pulmonar/fisiopatología , Agonistas Adrenérgicos beta/farmacología , Alcalosis/complicaciones , Animales , Antiinflamatorios/farmacología , Presión Sanguínea/efectos de los fármacos , Fenoterol/farmacología , Transferencias de Fluidos Corporales/efectos de los fármacos , Hidrocortisona/farmacología , Concentración de Iones de Hidrógeno , Hipocapnia/complicaciones , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Papaverina/farmacología , Perfusión , Arteria Pulmonar , Edema Pulmonar/etiología , Conejos , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología , Vasodilatadores/farmacología
13.
Invest Clin ; 47(1): 49-64, 2006 Mar.
Artículo en Español | MEDLINE | ID: mdl-16562644

RESUMEN

The use of Positive end-expiratory pressure (PEEP) as a strategy of mechanical ventilation offers its advantages, such as improved oxygenation, without causing alveolar overstretching and barotrauma. We aim to investigate the effect of several levels of PEEP on barotrauma and, whether an optimal level of PEEP exists. Forty-eight New Zealand rabbits (2.5-3.5 kg) were divided into four groups with PEEP settings of 0, 4, 8 and 12 cmH2O, at increasing levels of inspiratory volume (IV). This was done in blood perfused rabbit lungs and in lungs perfused with a Buffer-Albumin Solution. We observed that lungs ventilated with PEEP 0 cmH2O suffered pulmonary rupture at high IV (300cc), with significant increases of Pap (Pulmonary artery pressure) and FFR (Fluid filtration rate). Lungs ventilated with PEEP 8 and 12 suffered pulmonary rupture at lower IV (200cc and 150cc vs. 300cc respectively) On the other hand, lungs ventilated with PEEP 4 cmH2O reached the highest IV (400cc), in addition, they showed the lowest elevations of Pap and FFR. The acellular lungs ventilated with PEEP 4, 8 and 12 showed pulmonary rupture at lower IV when compared with cellular ones (300cc vs. 400cc: 100cc vs. 200cc and 100cc vs. 150cc respectively). We concluded that an optimal PEEP exists, which protects against barotrauma, however, excess of PEEP could enhance its development. The blood could contain some mediators which attenuate the damage induced by barotrauma.


Asunto(s)
Barotrauma/terapia , Lesión Pulmonar , Respiración con Presión Positiva/efectos adversos , Respiración con Presión Positiva/métodos , Animales , Técnicas In Vitro , Conejos
14.
Invest Clin ; 47(4): 323-35, 2006 Dec.
Artículo en Español | MEDLINE | ID: mdl-17176901

RESUMEN

It has been reported that ventilation with large tidal volumes causes pulmonary edema in rats by the stimulation and release of proinflammatory mediators. Our objective was to determine the level at which volutrauma induced by changes in Airway Pressure (PAW) and Inspiratory Volume (VI) produce significant changes on the Fluid Filtration Rate (FFR) and Pulmonary Artery Pressure (PAP) in lungs perfused with blood (cellular groups) or with a buffer-albumin solution (acellular groups), with a Positive End Expiratory Pressure (PEEP) 0 or 2 cmH2O and to study the effect of a vasodilator with antiinflammatory properties (fenoterol) in blood-perfused groups. Three experimental groups were used: the cellular groups studied the effect of increased PAW and IV in isolated lungs perfused with blood and PEEP 0 and 2; the acellular groups studied the increased PAW and IV in isolated lungs perfused with a buffer-albumin solution and PEEP 0 and 2; The fenoterol group studied the effect of increased PAW and IV in isolated lungs perfused with blood + fenoterol and PEEP 2. The results show that an increase of FFR is produced earlier in acellular groups than in cellular ones and that the damage in cellular groups is microscopically and macroscopically inferior when compared to acellular groups. Fenoterol did not inhibit edema formation, and that PEEP 2, both in the cellular and the acellular groups, has a protective effect. We propose the possible existence of mediators with protective effects against the formation of pulmonary edema in the blood. These data suggest that volutrauma induced pulmonary edema has a predominantly traumatic origin when the lungs are perfused with blood.


Asunto(s)
Presión Sanguínea/fisiología , Respiración con Presión Positiva , Arteria Pulmonar/fisiología , Circulación Pulmonar , Edema Pulmonar/fisiopatología , Agonistas Adrenérgicos beta/farmacología , Animales , Interpretación Estadística de Datos , Modelos Animales de Enfermedad , Fenoterol/farmacología , Filtración , Pulmón/efectos de los fármacos , Pulmón/patología , Factor de Activación Plaquetaria/antagonistas & inhibidores , Respiración con Presión Positiva/efectos adversos , Atelectasia Pulmonar/etiología , Edema Pulmonar/etiología , Edema Pulmonar/prevención & control , Conejos , Mecánica Respiratoria , Volumen de Ventilación Pulmonar
15.
Mol Cell Biol ; 31(17): 3546-56, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21730292

RESUMEN

To maintain cellular ATP levels, hypoxia leads to Na,K-ATPase inhibition in a process dependent on reactive oxygen species (ROS) and the activation of AMP-activated kinase α1 (AMPK-α1). We report here that during hypoxia AMPK activation does not require the liver kinase B1 (LKB1) but requires the release of Ca(2+) from the endoplasmic reticulum (ER) and redistribution of STIM1 to ER-plasma membrane junctions, leading to calcium entry via Ca(2+) release-activated Ca(2+) (CRAC) channels. This increase in intracellular Ca(2+) induces Ca(2+)/calmodulin-dependent kinase kinase ß (CaMKKß)-mediated AMPK activation and Na,K-ATPase downregulation. Also, in cells unable to generate mitochondrial ROS, hypoxia failed to increase intracellular Ca(2+) concentration while a STIM1 mutant rescued the AMPK activation, suggesting that ROS act upstream of Ca(2+) signaling. Furthermore, inhibition of CRAC channel function in rat lungs prevented the impairment of alveolar fluid reabsorption caused by hypoxia. These data suggest that during hypoxia, calcium entry via CRAC channels leads to AMPK activation, Na,K-ATPase downregulation, and alveolar epithelial dysfunction.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Canales de Calcio/metabolismo , Regulación hacia Abajo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Western Blotting , Calcio/metabolismo , Canales de Calcio/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Células Cultivadas , Retículo Endoplásmico/metabolismo , Activación Enzimática , Células HEK293 , Humanos , Hipoxia , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Pulmón/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , Molécula de Interacción Estromal 1
16.
FEBS Lett ; 584(18): 3985-9, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20691686

RESUMEN

Hypercapnia has been shown to impair alveolar fluid reabsorption (AFR) by decreasing Na,K-ATPase activity. Extracellular signal-regulated kinase pathway (ERK) is activated under conditions of cellular stress and has been known to regulate the Na,K-ATPase. Here, we show that hypercapnia leads to ERK activation in a time-dependent manner in alveolar epithelial cells (AEC). Inhibition of ERK by U0126 or siRNA prevented both the hypercapnia-induced Na,K-ATPase endocytosis and impairment of AFR. Moreover, ERK inhibition prevented AMPK activation, a known modulator of hypercapnia-induced Na,K-ATPase endocytosis. Accordingly, these data suggest that hypercapnia-induced Na,K-ATPase endocytosis is dependent on ERK activation in AEC and that ERK plays an important role in hypercapnia-induced impairment of AFR in rat lungs.


Asunto(s)
Hipercapnia/enzimología , Pulmón/enzimología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Butadienos/farmacología , Regulación hacia Abajo , Endocitosis , Inhibidores Enzimáticos/farmacología , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Nitrilos/farmacología , Fosforilación , Ratas , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
17.
J Cell Sci ; 122(Pt 9): 1390-400, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19366731

RESUMEN

Much effort has been expended on analyzing how microfilament and microtubule cytoskeletons dictate the interaction of cells with matrix at adhesive sites called focal adhesions (FAs). However, vimentin intermediate filaments (IFs) also associate with the cell surface at FAs in endothelial cells. Here, we show that IF recruitment to FAs in endothelial cells requires beta3 integrin, plectin and the microtubule cytoskeleton, and is dependent on microtubule motors. In CHO cells, which lack beta3 integrin but contain vimentin, IFs appear to be collapsed around the nucleus, whereas in CHO cells expressing beta3 integrin (CHOwtbeta3), vimentin IFs extend to FAs at the cell periphery. This recruitment is regulated by tyrosine residues in the beta3 integrin cytoplasmic tail. Moreover, CHOwtbeta3 cells exhibit significantly greater adhesive strength than CHO or CHO cells expressing mutated beta3 integrin proteins. These differences require an intact vimentin network. Therefore, vimentin IF recruitment to the cell surface is tightly regulated and modulates the strength of adhesion of cells to their substrate.


Asunto(s)
Membrana Celular/metabolismo , Adhesiones Focales/metabolismo , Integrina beta3/metabolismo , Plectina/metabolismo , Vimentina/metabolismo , Animales , Células CHO , Adhesión Celular/fisiología , Cricetinae , Cricetulus , Citoesqueleto/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Integrina beta3/genética , Filamentos Intermedios/metabolismo , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Paxillin/genética , Paxillin/metabolismo , Plectina/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Vimentina/genética
18.
J Bioenerg Biomembr ; 39(5-6): 391-5, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17972021

RESUMEN

A hallmark of acute lung injury is the accumulation of a protein rich edema which impairs gas exchange and leads to hypoxemia. The resolution of lung edema is effected by active sodium transport, mostly contributed by apical Na(+) channels and the basolateral located Na,K-ATPase. It has been reported that the decrease of Na,K-ATPase function seen during lung injury is due to its endocytosis from the cell plasma membrane into intracellular pools. In alveolar epithelial cells exposed to severe hypoxia, we have reported that increased production of mitochondrial reactive oxygen species leads to Na,K-ATPase endocytosis and degradation. We found that this regulated process follows what is referred as the Phosphorylation-Ubiquitination-Recognition-Endocytosis-Degradation (PURED) pathway. Cells exposed to hypoxia generate reactive oxygen species which activate PKC zeta which in turn phosphorylates the Na,K-ATPase at the Ser18 residue in the N-terminus of the alpha1-subunit leading the ubiquitination of any of the four lysines (K16, K17, K19, K20) adjacent to the Ser18 residue. This process promotes the alpha1-subunit recognition by the mu2 subunit of the adaptor protein-2 and its endocytosis trough a clathrin dependent mechanism. Finally, the ubiquitinated Na,K-ATPase undergoes degradation via a lysosome/proteasome dependent mechanism.


Asunto(s)
Regulación hacia Abajo , Síndrome de Dificultad Respiratoria/enzimología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Endocitosis , Humanos , Fosforilación , Síndrome de Dificultad Respiratoria/metabolismo , Mucosa Respiratoria/enzimología , Mucosa Respiratoria/patología , Ubiquitinación
19.
Respirology ; 12(6): 799-806, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17986106

RESUMEN

BACKGROUND AND OBJECTIVE: Mechanical obstruction has been considered the prime determinant of haemodynamic changes after pulmonary embolism (PE); however, the function of vasoconstrictive and inflammatory mediators in the physiopathology of this disease is unclear. The aim of this investigation was to study the effect of an anti-inflammatory and a vasodilator in a setting of induced PE. METHODS: A prospective, laboratory study was undertaken using 30 New Zealand white rabbits. A model of isolated and perfused rabbit lungs was used; PE was induced using autologous blood clots. Six study groups were established (each n = 5): PE without any drug (PG); PE + papaverine (PpG); PE + hydrocortisone (HG); PE in West's Zone III (ZIIIG); PE using acellular perfusate (AG) and PE using acellular perfusate + papaverine (APpG). The pulmonary artery pressure (PAP) and fluid filtration rate (FFR) were continuously measured during the experiments. RESULTS: Increases in PAP and oedema formation were observed in the PG after embolization. The PpG and the APpG showed neither oedema nor significant PAP increases. The HG group developed less oedema and less increase in PAP compared with the PG. The ZIIIG developed oedema the fastest. The AG developed less oedema and increases in PAP compared with the PG. CONCLUSION: These findings suggest that vasoconstriction and inflammatory mediators play an important role in the physiopathology of PE, as neither PAP increases nor oedema were observed in the PpG and a reduction of oedema and PAP was seen in the HG group. The decrease in oedema and PAP in the acellular group strongly suggests a key role of circulating blood cells.


Asunto(s)
Antiinflamatorios/farmacología , Hidrocortisona/farmacología , Papaverina/farmacología , Embolia Pulmonar/fisiopatología , Vasoconstricción/fisiología , Vasodilatadores/farmacología , Animales , Modelos Animales de Enfermedad , Hemodinámica , Técnicas In Vitro , Estudios Prospectivos , Edema Pulmonar/fisiopatología , Conejos , Mecánica Respiratoria
20.
PLoS One ; 2(11): e1238, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18043745

RESUMEN

BACKGROUND: In patients with acute respiratory failure, gas exchange is impaired due to the accumulation of fluid in the lung airspaces. This life-threatening syndrome is treated with mechanical ventilation, which is adjusted to maintain gas exchange, but can be associated with the accumulation of carbon dioxide in the lung. Carbon dioxide (CO2) is a by-product of cellular energy utilization and its elimination is affected via alveolar epithelial cells. Signaling pathways sensitive to changes in CO2 levels were described in plants and neuronal mammalian cells. However, it has not been fully elucidated whether non-neuronal cells sense and respond to CO2. The Na,K-ATPase consumes approximately 40% of the cellular metabolism to maintain cell homeostasis. Our study examines the effects of increased pCO2 on the epithelial Na,K-ATPase a major contributor to alveolar fluid reabsorption which is a marker of alveolar epithelial function. PRINCIPAL FINDINGS: We found that short-term increases in pCO2 impaired alveolar fluid reabsorption in rats. Also, we provide evidence that non-excitable, alveolar epithelial cells sense and respond to high levels of CO2, independently of extracellular and intracellular pH, by inhibiting Na,K-ATPase function, via activation of PKCzeta which phosphorylates the Na,K-ATPase, causing it to endocytose from the plasma membrane into intracellular pools. CONCLUSIONS: Our data suggest that alveolar epithelial cells, through which CO2 is eliminated in mammals, are highly sensitive to hypercapnia. Elevated CO2 levels impair alveolar epithelial function, independently of pH, which is relevant in patients with lung diseases and altered alveolar gas exchange.


Asunto(s)
Monóxido de Carbono/metabolismo , Concentración de Iones de Hidrógeno , Alveolos Pulmonares/fisiología , Animales , Líquidos Corporales , Células Epiteliales/citología , Células Epiteliales/enzimología , Masculino , Fosforilación , Alveolos Pulmonares/citología , Alveolos Pulmonares/enzimología , Ratas , Ratas Sprague-Dawley , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA