Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361851

RESUMEN

Tandemly arranged and dispersed repetitive DNA sequences are important structural and functional elements that make up a significant portion of vertebrate genomes. Using high throughput, low coverage whole genome sequencing followed by bioinformatics analysis, we have identified seven major tandem repetitive DNAs and two fragments of LTR retrotransposons in the genome of the Nile crocodile (Crocodylus niloticus, 2n = 32). The repeats showed great variability in structure, genomic organization, and chromosomal distribution as revealed by fluorescence in situ hybridization (FISH). We found that centromeric and pericentromeric heterochromatin of C. niloticus is composed of previously described in Crocodylus siamensis CSI-HindIII and CSI-DraI repetitive sequence families, a satellite revealed in Crocodylus porosus, and additionally contains at least three previously unannotated tandem repeats. Both LTR sequences identified here belong to the ERV1 family of endogenous retroviruses. Each pericentromeric region was characterized by a diverse set of repeats, with the exception of chromosome pair 4, in which we found only one type of satellite. Only a few repeats showed non-centromeric signals in addition to their centromeric localization. Mapping of 18S-28S ribosomal RNA genes and telomeric sequences (TTAGGG)n did not demonstrate any co-localization of these sequences with revealed centromeric and pericentromeric heterochromatic blocks.


Asunto(s)
Caimanes y Cocodrilos , Animales , Caimanes y Cocodrilos/genética , Hibridación Fluorescente in Situ , Centrómero/genética , Secuencias Repetitivas de Ácidos Nucleicos , ARN Ribosómico 18S/genética
2.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555478

RESUMEN

The veiled chameleon (Chamaeleo calyptratus) is a typical member of the family Chamaeleonidae and a promising object for comparative cytogenetics and genomics. The karyotype of C. calyptratus differs from the putative ancestral chameleon karyotype (2n = 36) due to a smaller chromosome number (2n = 24) resulting from multiple chromosome fusions. The homomorphic sex chromosomes of an XX/XY system were described recently using male-specific RADseq markers. However, the chromosomal pair carrying these markers was not identified. Here we obtained chromosome-specific DNA libraries of C. calyptratus by chromosome flow sorting that were assigned by FISH and sequenced. Sequence comparison with three squamate reptiles reference genomes revealed the ancestral syntenic regions in the C. calyptratus chromosomes. We demonstrated that reducing the chromosome number in the C. calyptratus karyotype occurred through two fusions between microchromosomes and four fusions between micro-and macrochromosomes. PCR-assisted mapping of a previously described Y-specific marker indicates that chromosome 5 may be the sex chromosome pair. One of the chromosome 5 conserved synteny blocks shares homology with the ancestral pleurodont X chromosome, assuming parallelism in the evolution of sex chromosomes from two basal Iguania clades (pleurodonts and acrodonts). The comparative chromosome map produced here can serve as the foundation for future genome assembly of chameleons and vertebrate-wide comparative genomic studies.


Asunto(s)
Lagartos , Animales , Masculino , Sintenía/genética , Lagartos/genética , Cromosomas Sexuales/genética , Cromosomas , Genoma , Cariotipo , Evolución Molecular
3.
Cytogenet Genome Res ; 161(1-2): 32-42, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33677437

RESUMEN

Polyploid species represent a challenge for both cytogenetic and genomic studies due to their high chromosome numbers and the morphological similarity between their paralogous chromosomes. This paper describes the use of low-coverage high-throughput sequencing to identify the 14 most abundant tandemly arranged repetitive elements in the paleotetraploid genome of the crucian carp (Carassius carassius, 2n = 100). These repetitive elements were then used for molecular cytogenetic studies of a closely related functionally triploid form of the Prussian carp (Carassius gibelio, 3n = 150 + Bs) and a relatively distant diploid species, the tench (Tinca tinca, 2n = 48). According to their distribution on the chromosomes of the 3 aforementioned species, the repetitive elements here identified can be divided into 5 groups: (1) those specific to a single genomic locus in both Carassius species, despite the recent carp-specific genome duplication; (2) those located in a single genomic locus of T. tinca, but amplified in one or both Carassius species; (3) those massively amplified in the B chromosomes of C. gibelio; (4) those located in a single locus in C. gibelio, but amplified in many blocks in C. carassius; and (5) those located in multiple pericentromeric loci in both Carassius species. Our data indicate that some of the repetitive elements are highly conserved in cyprinoid species and may serve as good cytogenetic and genomic markers for discriminating paralogous chromosomes, while others are evolutionarily recent, and their amplification may be related to the last whole-genome duplication event.


Asunto(s)
Carpas/genética , ADN/genética , Ploidias , Animales , Citogenética , Diploidia , Femenino , Duplicación de Gen , Genoma , Hibridación Fluorescente in Situ , Cariotipificación , Masculino , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN , Especificidad de la Especie
4.
Cytogenet Genome Res ; 160(3): 134-140, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32092753

RESUMEN

Reptiles show a remarkable diversity of sex determination mechanisms and sex chromosome systems, derived from different autosomal pairs. The origin of the ZW sex chromosomes of Lacerta agilis, a widespread Eurasian lizard species, is a matter of discussion: is it a small macrochromosome from the 11-18 group common to all lacertids, or does this species have a unique ZW pair derived from the large chromosome 5? Using independent molecular cytogenetic methods, we investigated the karyotype of L. agilis exigua from Siberia, Russia, to identify the sex chromosomes. FISH with a flow-sorted chromosome painting probe derived from L. strigata and specific to chromosomes 13, 14, and Z confirmed that the Z chromosome of L. agilis is a small macrochromosome, the same as in L. strigata. FISH with the telomeric probe showed an extensive accumulation of the telomere-like repeat in the W chromosome in agreement with previous studies, excluding the possibility that the lineages of L. agilis studied in different works could have different sex chromosome systems due to a putative intra-species polymorphism. Our results reinforce the idea of the stability of the sex chromosomes and lack of evidence for sex-chromosome turnovers in known species of Lacertidae.


Asunto(s)
Evolución Biológica , Lagartos/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Cromosomas Sexuales/genética , Animales , Hibridación Fluorescente in Situ , Federación de Rusia
5.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33334059

RESUMEN

MicroRNAs play a crucial role in eukaryotic gene regulation. For a long time, only little was known about microRNA-based gene regulatory mechanisms in polyploid animal genomes due to difficulties of polyploid genome assembly. However, in recent years, several polyploid genomes of fish, amphibian, and even invertebrate species have been sequenced and assembled. Here we investigated several key microRNA-associated genes in the recently sequenced sterlet (Acipenser ruthenus) genome, whose lineage has undergone a whole genome duplication around 180 MYA. We show that two paralogs of drosha, dgcr8, xpo1, and xpo5 as well as most ago genes have been retained after the acipenserid-specific whole genome duplication, while ago1 and ago3 genes have lost one paralog. While most diploid vertebrates possess only a single copy of dicer1, we strikingly found four paralogs of this gene in the sterlet genome, derived from a tandem segmental duplication that occurred prior to the last whole genome duplication. ago1,3,4 and exportins1,5 look to be prone to additional segment duplications producing up to four-five paralog copies in ray-finned fishes. We demonstrate for the first time exon microsatellite amplification in the acipenserid drosha2 gene, resulting in a highly variable protein product, which may indicate sub- or neofunctionalization. Paralogous copies of most microRNA metabolism genes exhibit different expression profiles in various tissues and remain functional despite the rediploidization process. Subfunctionalization of microRNA processing gene paralogs may be beneficial for different pathways of microRNA metabolism. Genetic variability of microRNA processing genes may represent a substrate for natural selection, and, by increasing genetic plasticity, could facilitate adaptations to changing environments.


Asunto(s)
Peces/genética , MicroARNs/genética , Poliploidía , Vertebrados/genética , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Biología Computacional/métodos , Peces/clasificación , Perfilación de la Expresión Génica , Filogenia
6.
Chromosoma ; 127(3): 301-311, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29380046

RESUMEN

Supernumerary chromosomes sporadically arise in many eukaryotic species as a result of genomic rearrangements. If present in a substantial part of species population, those are called B chromosomes, or Bs. This is the case for 70 mammalian species, most of which are rodents. In humans, the most common types of extra chromosomes, sSMCs (small supernumerary marker chromosomes), are diagnosed in approximately 1 of 2000 postnatal cases. Due to low frequency in population, human sSMCs are not considered B chromosomes. Genetic content of both B-chromosomes and sSMCs in most cases remains understudied. Here, we apply microdissection of single chromosomes with subsequent low-pass sequencing on Ion Torrent PGM and Illumina MiSeq to identify unique and repetitive DNA sequences present in a single human sSMC and several B chromosomes in mice Apodemus flavicollis and Apodemus peninsulae. The pipeline for sequencing data analysis was made available in Galaxy interface as an addition to previously published command-line version. Human sSMC was attributed to the proximal part of chromosome 15 long arm, and breakpoints leading to its formation were located into satellite DNA arrays. Genetic content of Apodemus B chromosomes was species-specific, and minor alterations were observed in both species. Common features of Bs in these Apodemus species were satellite DNA and ERV enrichment, as well as the presence of the vaccinia-related kinase gene Vrk1. Understanding of the non-essential genome elements content provides important insights into genome evolution in general.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas Humanos , Cromosomas , Marcadores Genéticos , Murinae/genética , Animales , Genoma , Inestabilidad Genómica , Humanos , Hibridación Fluorescente in Situ , Flujo de Trabajo
7.
Mol Genet Genomics ; 294(1): 13-21, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30146671

RESUMEN

Supernumerary elements of the genome are often called B chromosomes. They usually consist of various autosomal sequences and, because of low selective pressure, are mostly pseudogenized and contain many repeats. There are numerous reports on B chromosomes in mammals, fish, invertebrates, plants, and fungi, but only a few of them have been studied using sequencing techniques. However, reptilian supernumerary chromosomes have been detected only cytogenetically and never sequenced or analyzed at the molecular level. One model squamate species with available genome sequence is Anolis carolinensis. The scope of the present article is to describe the genetic content of A. carolinensis supernumerary chromosomes. In this article, we confirm the presence of B chromosomes in this species by reverse painting and synaptonemal complex analysis. We applied low-pass high-throughput sequencing to analyze flow-sorted B chromosomes. Anole B chromosomes exhibit similar traits to other supernumerary chromosomes from different taxons: they contain two genes related to cell division control (INCENP and SPIRE2), are enriched in specific repeats, and show a high degree of pseudogenization. Therefore, the present study confirms that reptilian B chromosomes resemble supernumerary chromosomes of other taxons.


Asunto(s)
Cromosomas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Lagartos/genética , Análisis de Secuencia de ADN/métodos , Animales , División Celular , Proteínas Cromosómicas no Histona/genética , Mapeo Cromosómico , Pintura Cromosómica , Evolución Molecular , Proteínas de Microfilamentos/genética , Filogenia
8.
Cytogenet Genome Res ; 157(1-2): 115-122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30820011

RESUMEN

Pleurodont lizards are characterized by an ancient system of sex chromosomes. Along with stability of the central component of the system (homologous to the X chromosome of Anolis carolinensis [Dactyloidae], ACAX), in some genera the ancestral sex chromosomes are fused with microautosomes, forming neo-sex chromosomes. The genus Ctenonotus (Dactyloidae) is characterized by multiple X1X1X2X2/X1X2Y sex chromosomes. According to cytogenetic data, the large neo-Y chromosome is formed by fusion of the ancestral Y chromosome with 2 microautosomes (homologous to ACA10 or ACA11 and ACA12), the X1 chromosome is formed by fusion of the ancestral X chromosome with the autosome homologous to ACA10 or ACA11, and the X2 chromosome is homologous to autosome ACA12. To determine more precisely the content and evolution of the Ctenonotus sex chromosomes, we sequenced flow-sorted chromosomes (both sex chromosomes and microautosomes as control) of 2 species with a similar system: C. pogus and C. sabanus. Our results indicate that the translocated part of the X1 is homologous to ACA11, X2 is homologous to ACA12, and the Y contains segments homologous to both ACA11 and ACA12. Molecular divergence estimates suggest that the ancestral X-derived part has completely degenerated in the Y of Ctenonotus, similar to the degeneration of the Norops sagrei Y chromosome (Dactyloidae). The newly added regions show loss of DNA content, but without degeneration of the conserved regions. We hypothesize that the translocation of autosomal blocks onto sex chromosomes facilitated rapid degeneration of the pseudoautosomal region on the ancestral Y.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Lagartos/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Pintura Cromosómica/métodos , Cromosomas/genética , ADN/química , ADN/genética , ADN/metabolismo , Femenino , Lagartos/clasificación , Masculino , Especificidad de la Especie , Translocación Genética
9.
Chromosoma ; 125(4): 661-8, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27411693

RESUMEN

Acipenseriformes is an order of ray-finned fishes, comprising 27 extant species of sturgeons and paddlefishes inhabiting waters of the Northern Hemisphere. The order has a basal position within Actinopteri (ray-finned fish minus polypterids) and is characterized by many specific morphological and genomic features, including high diploid chromosome numbers, various levels of ploidy between species, unclear sex determination, and propensity to interspecific hybridization. Recent advances in molecular genetics, genomics, and comparative cytogenetics produced novel data on different aspects of acipenseriform biology, including improved phylogenetic reconstructions and better understanding of genome structure. Here, we discuss the cytogenetic and genomic traits of acipenseriforms and their connection with polyploidization and tolerance to interspecific hybridization.


Asunto(s)
Peces/genética , Genoma/genética , Poliploidía , Procesos de Determinación del Sexo/genética , Animales , Evolución Biológica , Citogenética , Evolución Molecular , Cariotipo
10.
Cytogenet Genome Res ; 151(2): 89-95, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28315859

RESUMEN

Iguanians (Pleurodonta) are one of the reptile lineages that, like birds and mammals, have sex chromosomes of ancient origin. In most iguanians these are microchromosomes, making a distinction between the X and Y as well as between homeologous sex chromosomes in other species difficult. Meiotic chromosome analysis may be used to elucidate their differentiation, because meiotic prophase chromosomes are longer and less condensed than metaphase chromosomes, and the homologues are paired with each other, revealing minor heteromorphisms. Using electron and fluorescent microscopy of surface spread synaptonemal complexes (SCs) and immunolocalization of the proteins of the SC (SYCP3), the centromere, and recombination nodules (MLH1), we examined sex chromosome synapsis and recombination in 2 species of anoles (Dactyloidae), Anolis carolinensis and Deiroptyx coelestinus, in which the sex chromosomes represent the ancestral condition of iguanians. We detected clear differences in size between the anole X and Y microchromosomes and found an interspecies difference in the localization of the pseudoautosomal region. Our results show that the apparent homomorphy of certain reptile sex chromosome systems can hide a cryptic differentiation, which potentially may influence the evolution of sexual dimorphism and speciation.


Asunto(s)
Lagartos/genética , Cromosomas Sexuales , Complejo Sinaptonémico/genética , Animales , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Hibridación Fluorescente in Situ , Cariotipo , Masculino , Microscopía Fluorescente , Recombinación Genética , Caracteres Sexuales
11.
Cytogenet Genome Res ; 152(2): 65-72, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28719894

RESUMEN

Sokolov's dwarf hamster (Cricetulus sokolovi) is the least studied representative of the striped hamsters (Cricetulus barabensis species group), the taxonomy of which remains controversial. The species was described based on chromosome morphology, but neither the details of the karyotype nor the phylogenetic relationships with other Cricetulus are known. In the present study, the karyotype of C. sokolovi was examined using cross-species chromosome painting. Molecular and cytogenetic data were employed to determine the phylogenetic position of Sokolov's hamster and to analyze the potential pathways of chromosome evolution in Cricetulus. Both the chromosome and molecular data support the species status of Sokolov's hamster. Phylogenetic analysis of the CYTB data placed C. sokolovi as sister to all other striped hamsters (sequence divergence of 8.1%). FISH data revealed that the karyotype of C. sokolovi is highly rearranged, with the most parsimonious scenario of its origin implying at least 4 robertsonian events and a centromere shift. Comparative cytogenetic data on Cricetinae suggest that their evolutionary history includes both periods of chromosomal conservatism and episodes of rapid chromosomal change.


Asunto(s)
Pintura Cromosómica/métodos , Cromosomas de los Mamíferos/genética , Cricetulus/genética , Cariotipo , Filogenia , Animales , Haplotipos/genética
12.
Cytogenet Genome Res ; 152(3): 148-157, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28850953

RESUMEN

Acipenseriformes represent a phylogenetically basal clade of ray-finned fish characterized by unusual genomic traits, including paleopolyploid states of extant genomes with high chromosome numbers and slow rates of molecular evolution. Despite a high interest in this fish group, only a limited number of studies have been accomplished on the isolation and characterization of repetitive DNA, karyotype standardization is not yet complete, and sex chromosomes are still to be identified. Here, we applied next-generation sequencing and cluster analysis to characterize major fractions of sterlet (Acipenser ruthenus) repetitive DNA. Using FISH, we mapped 16 tandemly arranged sequences on sterlet chromosomes and found them to be unevenly distributed in the genome with a tendency to cluster in particular regions. Some of the satellite DNAs might be used as specific markers to identify individual chromosomes and their paralogs, resulting in the unequivocal identification of at least 18 chromosome pairs. Our results provide an insight into the characteristic genomic distribution of the most common sterlet repetitive sequences. Biased accumulation of repetitive DNAs in particular chromosomes makes them especially interesting for further search for cryptic sex chromosomes. Future studies of these sequences in other acipenserid species will provide new perspectives regarding the evolution of repetitive DNA within the genomes of this fish order.


Asunto(s)
ADN Satélite/genética , Peces/genética , Cromosomas Sexuales/genética , Animales , ADN Ribosómico/genética , Evolución Molecular , Marcadores Genéticos , Hibridación Fluorescente in Situ , Cariotipificación , Microdisección , Mapeo Físico de Cromosoma , Análisis de Secuencia de ADN
13.
Chromosome Res ; 24(3): 309-23, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27116673

RESUMEN

Chromocenters are interphase nuclear landmark structures of constitutive heterochromatin. The tandem repeat (TR)-enriched parts of different chromosomes cluster together in chromocenters. There has been progress in recent years in determining the protein content of chromocenters, although it is not clear which DNA sequences underly constitutive heterochromatin apart from the TRs. The aim of the current work was to find out which DNA sequences besides TRs are involved in chromocenters' formation. Biochemically isolated chromocenters and microdissected centromeric regions were amplified by DOP-PCR, then cloned and sequenced. Alignment to Repbase, the mouse reference genome and WGS databases separated the sequences from both libraries into three groups: (1) sequences with similarity to pericentromere mouse major satellite; (2) sequences without similarity to any repetitive sequences; (3) sequences with similarity to long interspersed nuclear elements (LINEs). LINE-related sequences have a disperse pattern distribution on chromosomes predicted in silico. Selected clones were used for fluorescent in situ hybridization (FISH). The 10 clones tested hybridized to chromocenters and centromeric regions of metaphase chromosomes. These clones were used for double FISH with four known cloned TRs (satDNA, satellite DNA) and a probe specific for the sex chromosomes. The probes bind various chromocenters' regions without overlapping; so, FISH results reveal a complex chromocenter composition. We mapped 18 LINE-derived clones to the RepBase L1 records. Most of them grouped in a ∼2-kb region at the end of the second ORF and 3' untranslated region (UTR). So, even the limited number of the clones allows us to determine the region of the L1 element that is specific for heterochromatic regions. Although the L1 full-length probe did not hybridize at detectable levels to the heterochromatic region on any chromosome, the 2-kb fragment found is definitely a part of these regions. The precise LINE ∼2-kb fragment is the component of mouse and human constitutive heterochromatin enriched with TRs. The method used for amplification of the probes from two sources of the heterochromatic material uncovered the enrichment of a precise fragment of LINE within chromocenters.


Asunto(s)
Genoma/genética , Heterocromatina/genética , Elementos de Nucleótido Esparcido Largo/genética , Secuencias Repetidas en Tándem/genética , Regiones no Traducidas 3'/genética , Animales , Línea Celular , Clonación Molecular , Sondas de ADN/genética , ADN Satélite/genética , Bases de Datos Genéticas , Fibroblastos/citología , Humanos , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C3H , Sistemas de Lectura Abierta/genética , Análisis de Secuencia de ADN
14.
Chromosome Res ; 24(2): 145-59, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26611440

RESUMEN

The subfamily Arvicolinae consists of a great number of species with highly diversified karyotypes. In spite of the wide use of arvicolines in biological and medicine studies, the data on their karyotype structures are limited. Here, we made a set of painting probes from flow-sorted chromosomes of a male Palearctic collared lemming (Dicrostonyx torquatus, DTO). Together with the sets of painting probes made previously from the field vole (Microtus agrestis, MAG) and golden hamster (Mesocricetus auratus, MAU), we carried out a reciprocal chromosome painting between these three species. The three sets of probes were further hybridized onto the chromosomes of the Eurasian water vole (Arvicola amphibius) and northern red-backed vole (Myodes rutilus). We defined the diploid chromosome number in D. torquatus karyotype as 2n = 45 + Bs and showed that the system of sex chromosomes is X1X2Y1. The probes developed here provide a genomic tool-kit, which will help to investigate the evolutionary biology of the Arvicolinae rodents. Our results show that the syntenic association MAG1/17 is present not only in Arvicolinae but also in some species of Cricetinae; and thus, should not be considered as a cytogenetic signature for Arvicolinae. Although cytogenetic signature markers for the genera have not yet been found, our data provides insight into the likely ancestral karyotype of Arvicolinae. We conclude that the karyotypes of modern voles could have evolved from a common ancestral arvicoline karyotype (AAK) with 2n = 56 mainly by centric fusions and fissions.


Asunto(s)
Arvicolinae/genética , Mapeo Cromosómico/métodos , Pintura Cromosómica/métodos , Mesocricetus/genética , Sintenía/genética , Animales , Evolución Biológica , Línea Celular , Aberraciones Cromosómicas , Bandeo Cromosómico , Cricetinae , Marcadores Genéticos/genética , Cariotipo , Filogenia , Cromosomas Sexuales/genética
15.
BMC Genomics ; 17(1): 618, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27516089

RESUMEN

BACKGROUND: B chromosomes are dispensable and variable karyotypic elements found in some species of animals, plants and fungi. They often originate from duplications and translocations of host genomic regions or result from hybridization. In most species, little is known about their DNA content. Here we perform high-throughput sequencing and analysis of B chromosomes of roe deer and brocket deer, the only representatives of Cetartiodactyla known to have B chromosomes. RESULTS: In this study we developed an approach to identify genomic regions present on chromosomes by high-throughput sequencing of DNA generated from flow-sorted chromosomes using degenerate-oligonucleotide-primed PCR. Application of this method on small cattle autosomes revealed a previously described KIT gene region translocation associated with colour sidedness. Implementing this approach to B chromosomes from two cervid species, Siberian roe deer (Capreolus pygargus) and grey brocket deer (Mazama gouazoubira), revealed dramatically different genetic content: roe deer B chromosomes consisted of two duplicated genomic regions (a total of 1.42-1.98 Mbp) involving three genes, while grey brocket deer B chromosomes contained 26 duplicated regions (a total of 8.28-9.31 Mbp) with 34 complete and 21 partial genes, including KIT and RET protooncogenes, previously found on supernumerary chromosomes in canids. Sequence variation analysis of roe deer B chromosomes revealed a high frequency of mutations and increased heterozygosity due to either amplification within B chromosomes or divergence between different Bs. In contrast, grey brocket deer B chromosomes were found to be more homogeneous and resembled autosomes in patterns of sequence variation. Similar tendencies were observed in repetitive DNA composition. CONCLUSIONS: Our data demonstrate independent origins of B chromosomes in the grey brocket and roe deer. We hypothesize that the B chromosomes of these two cervid species represent different stages of B chromosome sequences evolution: probably nascent and similar to autosomal copies in brocket deer, highly derived in roe deer. Based on the presence of the same orthologous protooncogenes in canids and brocket deer Bs we argue that genomic regions involved in B chromosome formation are not random. In addition, our approach is also applicable to the characterization of other evolutionary and clinical rearrangements.


Asunto(s)
Evolución Biológica , Cromosomas Humanos 4-5/química , Cromosomas de los Mamíferos/química , Ciervos/genética , Duplicación de Gen , Animales , Mapeo Cromosómico , Cartilla de ADN/química , Ciervos/clasificación , Expresión Génica , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Cariotipificación , Tasa de Mutación , Reacción en Cadena de la Polimerasa/métodos , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-ret/genética , Especificidad de la Especie
16.
Mol Genet Genomics ; 291(5): 1955-66, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27431992

RESUMEN

Squamate reptiles show a striking diversity in modes of sex determination, including both genetic (XY or ZW) and temperature-dependent sex determination systems. The genomes of only a handful of species have been sequenced, analyzed and assembled including the genome of Anolis carolinensis. Despite a high genome coverage, only macrochromosomes of A. carolinensis were assembled whereas the content of most microchromosomes remained unclear. Most of the Anolis species have homomorphic XY sex chromosome system. However, some species have large heteromorphic XY chromosomes (e.g., A. sagrei) and even multiple sex chromosomes systems (e.g. A. pogus), that were shown to be derived from fusions of the ancestral XY with microautosomes. We applied next generation sequencing of flow sorting-derived chromosome-specific DNA pools to characterize the content and composition of microchromosomes in A. carolinensis and A. sagrei. Comparative analysis of sequenced chromosome-specific DNA pools revealed that the A. sagrei XY sex chromosomes contain regions homologous to several microautosomes of A. carolinensis. We suggest that the sex chromosomes of A. sagrei are derived by fusions of the ancestral sex chromosome with three microautosomes and subsequent loss of some genetic content on the Y chromosome.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reptiles/genética , Análisis de Secuencia de ADN/métodos , Cromosomas Sexuales/genética , Animales , Mapeo Cromosómico , ADN/aislamiento & purificación , Evolución Molecular , Microdisección
17.
Cytogenet Genome Res ; 161(1-2): 5, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33887739
18.
Chromosome Res ; 23(2): 299-309, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25665924

RESUMEN

Gekkotan lizards are a highly specious (∼1600 described species) clade of squamate lizards with nearly cosmopolitan distribution in warmer areas. The clade is primarily nocturnal and forms an ecologically dominant part of the world nocturnal herpetofauna. However, molecular cytogenetic methods to study the evolution of karyotypes have not been widely applied in geckos. Our aim here was to uncover the extent of chromosomal rearrangements across the whole group Gekkota and to search for putative synapomorphies supporting the newly proposed phylogenetic relationships within this clade. We applied cross-species chromosome painting with the recently derived whole-chromosomal probes from the gekkonid species Gekko japonicus to members of the major gekkotan lineages. We included members of the families Diplodactylidae, Carphodactylidae, Pygopodidae, Eublepharidae, Phyllodactylidae and Gekkonidae. Our study demonstrates relatively high chromosome conservatism across the ancient group of gekkotan lizards. We documented that many changes in chromosomal shape across geckos can be attributed to intrachromosomal rearrangements. The documented rearrangements are not totally in agreement with the recently newly erected family Phyllodactylidae. The results also pointed to homoplasy, particularly in the reuse of chromosome breakpoints, in the evolution of gecko karyotypes.


Asunto(s)
Cromosomas , Lagartos/genética , Recombinación Genética , Translocación Genética , Animales , Pintura Cromosómica , Evolución Molecular , Hibridación Fluorescente in Situ , Cariotipo , Lagartos/clasificación , Metafase/genética , Filogenia
19.
Chromosome Res ; 23(2): 237-51, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25634498

RESUMEN

Recent advances in camelid genomics have provided draft sequence assemblies and the first comparative and gene maps for the dromedary (CDR) and the alpaca (LPA). However, no map information is currently available for the smallest camelid autosome-chr36. The chromosome is also of clinical interest because of its involvement in the minute chromosome syndrome (MCS) in infertile alpacas. Here, we developed molecular markers for camelid chr36 by direct sequencing CDR36 and LPA minute and by bioinformatics analysis of alpaca unplaced sequence scaffolds. We constructed a cytogenetic map for chr36 in the alpaca, llama, and dromedary and showed its homology to human chromosome 7 (HSA7) at 49.8-55.5 Mb. The chr36 map comprised seven markers, including two genes-ZPBP and WVC2. Comparative status of HSA7 was further refined by cytogenetic mapping of 16 HSA7 orthologs in camelid chromosomes 7 and 18 and by the analysis of HSA7-conserved synteny blocks across 11 vertebrate species. Finally, mapping chr36 markers in infertile alpacas confirmed that the minute chromosome was a derivative of chr36, but the small size was not a result of a large deletion or a translocation. Instead, cytogenetic mapping of 5.8S, 18S, and 28S rRNA genes (nucleolus organizer region (NOR)) revealed that the size difference between chr36 homologs in infertile alpacas was due to a heterozygous presence of NOR, whereas chr36 in fertile alpacas had no NOR. We theorized that the heterozygous NOR might affect chr36 pairing, recombination, and segregation in meiosis and, thus fertility.


Asunto(s)
Camélidos del Nuevo Mundo/genética , Mapeo Cromosómico , Cromosomas de los Mamíferos , Animales , Citogenética , Femenino , Marcadores Genéticos , Biblioteca Genómica , Humanos , Hibridación Fluorescente in Situ , Cariotipificación
20.
Cytogenet Genome Res ; 145(1): 42-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25926034

RESUMEN

Gibbon species (Hylobatidae) impress with an unusually high number of numerical and structural chromosomal changes within the family itself as well as compared to other Hominoidea including humans. In former studies applying molecular cytogenetic methods, 86 evolutionary conserved breakpoints (ECBs) were reported in the white-handed gibbon (Hylobates lar, HLA) with respect to the human genome. To analyze those ECBs in more detail and also to achieve a better understanding of the fast karyotype evolution in Hylobatidae, molecular data for these regions are indispensably necessary. In the present study, we obtained whole chromosome-specific probes by microdissection of all 21 HLA autosomes and prepared them for aCGH. Locus-specific DNA probes were also used for further molecular cytogenetic characterization of selected regions. Thus, we could map 6 yet unreported ECBs in HLA with respect to the human genome. Additionally, in 26 of the 86 previously reported ECBs, the present approach enabled a more precise breakpoint mapping. Interestingly, a preferred localization of ECBs within segmental duplications, copy number variant regions, and fragile sites was observed.


Asunto(s)
Puntos de Rotura del Cromosoma , Cromosomas de los Mamíferos/genética , Genoma Humano/genética , Animales , Línea Celular , Mapeo Cromosómico , Hibridación Genómica Comparativa , Secuencia Conservada , Evolución Molecular , Femenino , Humanos , Hylobates , Cariotipo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA