Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Plant Cell Environ ; 47(7): 2578-2596, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38533652

RESUMEN

Enhancing carbohydrate export from source to sink tissues is considered to be a realistic approach for improving photosynthetic efficiency and crop yield. The rice sucrose transporters OsSUT1, OsSWEET11a and OsSWEET14 contribute to sucrose phloem loading and seed filling. Crucially, Xanthomonas oryzae pv. oryzae (Xoo) infection in rice enhances the expression of OsSWEET11a and OsSWEET14 genes, and causes leaf blight. Here we show that co-overexpression of OsSUT1, OsSWEET11a and OsSWEET14 in rice reduced sucrose synthesis and transport leading to lower growth and yield but reduced susceptibility to Xoo relative to controls. The immunity-related hypersensitive response (HR) was enhanced in the transformed lines as indicated by the increased expression of defence genes, higher salicylic acid content and presence of HR lesions on the leaves. The results suggest that the increased expression of OsSWEET11a and OsSWEET14 in rice is perceived as a pathogen (Xoo) attack that triggers HR and results in constitutive activation of plant defences that are related to the signalling pathways of pathogen starvation. These findings provide a mechanistic basis for the trade-off between plant growth and immunity because decreased susceptibility against Xoo compromised plant growth and yield.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana , Oryza , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Plantas Modificadas Genéticamente , Ácido Salicílico , Sacarosa , Xanthomonas , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xanthomonas/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Sacarosa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Ácido Salicílico/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/inmunología
2.
Physiol Mol Biol Plants ; 30(5): 719-731, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38846463

RESUMEN

Reducing protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is a major regulatory step in the chlorophyll biosynthesis pathway. This reaction is catalyzed by light-dependent protochlorophyllide oxidoreductase (LPOR) in oxygenic phototrophs, particularly angiosperms. LPOR-NADPH and Pchlide form a ternary complex to be efficiently photo-transformed to synthesize Chlide and, subsequently, chlorophyll during the transition from skotomorphogenesis to photomorphogenesis. Besides lipids, carotenoids and poly-cis xanthophylls influence the formation of the photoactive LPOR complexes and the PLBs. The crystal structure of LPOR reveals evolutionarily conserved cysteine residues implicated in the Pchlide binding and catalysis around the active site. Different isoforms of LPOR viz PORA, PORB, and PORC expressed at different stages of chloroplast development play a photoprotective role by quickly transforming the photosensitive Pchlide to Chlide. Non-photo-transformed Pchlide acts as a photosensitizer to generate singlet oxygen that causes oxidative stress and cell death. Therefore, different isoforms of LPOR have evolved and differentially expressed during plant development to protect plants from photodamage and thus play a pivotal role during photomorphogenesis. This review brings out the salient features of LPOR structure, structure-function relationships, and ultra-fast photo transformation of Pchlide to Chlide by oligomeric and polymeric forms of LPOR.

3.
Physiol Mol Biol Plants ; 30(1): 1-16, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38435853

RESUMEN

Chlorophyll b is synthesized from chlorophyllide a, catalyzed by chlorophyllide a oxygenase (CAO). To examine whether reduced chlorophyll b content regulates chlorophyll (Chl) synthesis and photosynthesis, we raised CAO transgenic tobacco plants with antisense CAO expression, which had lower chlorophyll b content and, thus, higher Chl a/b ratio. Further, these plants had (i) lower chlorophyll b and total Chl content, whether they were grown under low or high light; (ii) decreased steady-state levels of chlorophyll biosynthetic intermediates, due, perhaps, to a feedback-controlled reduction in enzyme expressions/activities; (iii) reduced electron transport rates in their intact leaves, and reduced Photosystem (PS) I, PS II and whole chain electron transport activities in their isolated thylakoids; (iv) decreased carbon assimilation in plants grown under low or high light. We suggest that reduced synthesis of chlorophyll b by antisense expression of CAO, acting at the end of Chl biosynthesis pathway, downregulates the chlorophyll b biosynthesis, resulting in decreased Chl b, total chlorophylls and increased Chl a/b. We have previously shown that the controlled up-regulation of chlorophyll b biosynthesis and decreased Chl a/b ratio by over expression of CAO enhance the rates of electron transport and CO2 assimilation in tobacco. Conversely, our data, presented here, demonstrate that-antisense expression of CAO in tobacco, which decreases Chl b biosynthesis and increases Chl a/b ratio, leads to reduced photosynthetic electron transport and carbon assimilation rates, both under low and high light. We conclude that Chl b modulates photosynthesis; its controlled down regulation/ up regulation decreases/ increases light-harvesting, rates of electron transport, and carbon assimilation. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01395-5.

4.
Photosynth Res ; 158(1): 57-76, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37561272

RESUMEN

The C4 plants photosynthesize better than C3 plants especially in arid environment. As an attempt to genetically convert C3 plant to C4, the cDNA of decarboxylating C4 type NADP-malic enzyme from Zea mays (ZmNADP-ME) that has lower Km for malate and NADP than its C3 isoforms, was overexpressed in Arabidopsis thaliana under the control of 35S promoter. Due to increased activity of NADP-ME in the transgenics the malate decarboxylation increased that resulted in loss of carbon skeletons needed for amino acid and protein synthesis. Consequently, amino acid and protein content of the transgenics declined. Therefore, the Chl content, photosynthetic efficiency (Fv/Fm), electron transport rate (ETR), the quantum yield of photosynthetic CO2 assimilation, rosette diameter, and biomass were lower in the transgenics. However, in salt stress (150 mM NaCl), the overexpressers had higher Chl, protein content, Fv/Fm, ETR, and biomass than the vector control. NADPH generated in the transgenics due to increased malate decarboxylation, contributed to augmented synthesis of proline, the osmoprotectant required to alleviate the reactive oxygen species-mediated membrane damage and oxidative stress. Consequently, the glutathione peroxidase activity increased and H2O2 content decreased in the salt-stressed transgenics. The reduced membrane lipid peroxidation and lower malondialdehyde production resulted in better preservation, of thylakoid integrity and membrane architecture in the transgenics under saline environment. Our results clearly demonstrate that overexpression of C4 chloroplastic ZmNADP-ME in the C3 Arabidopsis thaliana, although decrease their photosynthetic efficiency, protects the transgenics from salinity stress.


Asunto(s)
Arabidopsis , Zea mays , Arabidopsis/genética , Arabidopsis/metabolismo , Malatos/metabolismo , Peróxido de Hidrógeno/metabolismo , NADP/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Fotosíntesis , Estrés Salino , Aminoácidos/metabolismo
5.
Plant Biotechnol J ; 20(8): 1518-1532, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35467074

RESUMEN

An important method to improve photosynthesis in C3 crops, such as rice and wheat, is to transfer efficient C4 characters to them. Here, cytosolic carbonic anhydrase (CA: ßCA3) of the C4 Flaveria bidentis (Fb) was overexpressed under the control of 35 S promoter in Arabidopsis thaliana, a C3 plant, to enhance its photosynthetic efficiency. Overexpression of CA resulted in a better supply of the substrate HCO3- for the endogenous phosphoenolpyruvate carboxylase in the cytosol of the overexpressers, and increased its activity for generating malate that feeds into the tricarboxylic acid cycle. This provided additional carbon skeleton for increased synthesis of amino acids aspartate, asparagine, glutamate, and glutamine. Increased amino acids contributed to higher protein content in the transgenics. Furthermore, expression of FbßCA3 in Arabidopsis led to a better growth due to expression of several genes leading to higher chlorophyll content, electron transport, and photosynthetic carbon assimilation in the transformants. Enhanced CO2 assimilation resulted in increased sugar and starch content, and plant dry weight. In addition, transgenic plants had lower stomatal conductance, reduced transpiration rate, and higher water-use efficiency. These results, taken together, show that expression of C4 CA in the cytosol of a C3 plant can indeed improve its photosynthetic capacity with enhanced water-use efficiency.


Asunto(s)
Arabidopsis , Anhidrasas Carbónicas , Flaveria , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Biomasa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Citosol/metabolismo , Flaveria/genética , Flaveria/metabolismo , Fotosíntesis/genética , Plantas Modificadas Genéticamente/metabolismo , Agua/metabolismo
6.
Physiol Mol Biol Plants ; 28(3): 585-605, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35465204

RESUMEN

Seed germination plays cardinal roles in seedling establishment and their successive growth. However, seed germination is retarded by far-red (FR) enrichment under low light stress, and the inhibitory signalling mechanism remains ambiguous. Our results indicated that low light treatment, both in the open and growth chamber conditions, inhibits rice seed germination by decreasing the gibberellin (GA) contents. To explore the mechanism of GA-deficiency under low light stress, differential expression profiling of GA-anabolic, -catabolic, ABA -anabolic, -catabolic, and SLR1 was investigated, revealing that expression of ABA- anabolic, GA-catabolic genes and SLR1 was upregulated with a simultaneous downregulation of ABA-catabolic and GA-anabolic genes under low light treatment. These results suggested that FR-induced GA inadequacy is resulted by upregulation of SLR1 and GA-catabolism genes consequently increase DELLA that further subsided GA-responses in the germinating rice seeds. Moreover, we provided evidence that FR-induced GA inadequacy demotes rice seed germination by decreasing amylase activity, eventually decreasing the carbohydrate solubilization in the germinating seeds. Finally, we suggest that under low light stress, due to a retarded conversion of phytochrome A to their bioactive form, the ABA-catabolic genes were eventually upregulated with a simultaneous downregulation of GA-anabolic genes. Consequently, a lower GA pool fails to leverage the GA-dependent DELLA degradation, further shutting down the expected GA responses that reduce germination efficiency under FR-enriched light. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01167-7.

7.
Photosynth Res ; 148(1-2): 17-32, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33813714

RESUMEN

Climate change could impact nutrient bioavailability in aquatic environment. To understand the interaction of nutrient bioavailability and elevated CO2, Chlorella vulgaris cells were grown in ambient air or 5% CO2 in different concentrations of nitrogen and phosphorus in a photobioreactor. The chlorophyll content, photosynthesis and respiration rates increased in 5% CO2 to support higher biomass production. The nutrient limitation in the growth media resulted in reduced photosynthetic rates of the algal cells and their PSI, PSII, and whole chain electron transport rates and biomass production. Conversely, their lipid content increased partly due to upregulation of expression of several lipid biosynthesis genes. The order of downregulation of photosynthesis and upregulation in lipid production due to nutrient limitation was in the order of N > P. The N-50 and 5% CO2 culture had only 10% reduction in biomass and 32% increase in lipids having 85% saturated fat required for efficient biofuel production. This growth condition is ideal for generation of biodiesel required to reduce the consumption of fossil fuel and combat global warming.


Asunto(s)
Biocombustibles , Biomasa , Células Cultivadas/efectos de los fármacos , Chlorella vulgaris/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Nitrógeno/metabolismo , Fotosíntesis/fisiología , Dióxido de Carbono/metabolismo , Fósforo/metabolismo , Fotobiorreactores
8.
Apoptosis ; 22(1): 41-56, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27747443

RESUMEN

In this paper we provide evidence for involvement of chloroplast as alternate organelle for initiating PCD in plants under light and abiotic stress. In animals, mitochondria are the major source of reactive oxygen species (ROS) and key executioner of programmed cell death (PCD). In plants, however, the primary site of generation of ROS is chloroplast and yet its involvement in PCD has not been worked out in details. We found by Evans blue staining that salt (150 mM NaCl)-treated protoplasts obtained from green seedlings had higher rate of cell death than protoplasts obtained from etiolated seedlings. This indicated that cell death induced by NaCl is accentuated by light. Imposition of salt-stress to green protoplasts generated H2O2. Known hallmarks of PCD i.e., blebbing of cell membrane, loabing in nucleus, nick in DNA were observed in light-exposed salt-treated protoplasts and seedlings. TUNEL-FACS assay demonstrate several DNA nicks in the salt-treated green protoplasts exposed to light. Conversely, salt-treated etiolated protoplasts kept in dark had only a few TUNEL-positive nuclei. Similarly, a substantial numbers of TUNEL positive nuclei were observed in green seedlings due to salt treatment in light. However, salt-treated etiolated seedlings kept in dark had very few TUNEL positive nuclei. Addition of Caspase 3 inhibitor (DAVD-CHO) rescued (~50 %) green protoplasts from salt-stress induced cell death suggesting an involvement of apoptosis like PCD (AL-PCD). Ultra structure studies of chloroplast, mitochondria and nucleus from the leaves obtained from salt treated seedlings at the time point that showed PCD signature, resulted to severe granal de-stacking in chloroplasts while structural integrity of mitochondria was maintained. These studies demonstrate the photo-modulation of salinity-induced PCD in photosynthetic tissues is mainly executed by chloroplasts.


Asunto(s)
Apoptosis/genética , Oryza/genética , Especies Reactivas de Oxígeno/metabolismo , Salinidad , Apoptosis/efectos de la radiación , Muerte Celular/genética , Muerte Celular/efectos de la radiación , Núcleo Celular/genética , Núcleo Celular/efectos de la radiación , Cloroplastos/genética , Cloroplastos/efectos de la radiación , Peróxido de Hidrógeno/metabolismo , Luz , Mitocondrias/genética , Mitocondrias/efectos de la radiación , Oryza/crecimiento & desarrollo , Oryza/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación
9.
Photosynth Res ; 130(1-3): 47-72, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26897549

RESUMEN

Plants with C4 photosynthesis are efficient in carbon assimilation and have an advantage over C3 photosynthesis. In C4 photosynthesis, the primary CO2 fixation is catalyzed by phosphoenolpyruvate carboxylase (PEPC). Here, we show that overexpression of Zea mays PEPC cDNA, under the control of 35S promoter, in Arabidopsis thaliana resulted in ~7-10 fold higher protein abundance and ~7-10 fold increase in PEPC activity in the transgenic lines than that in the vector control. We suggest that overexpression of PEPC played an anaplerotic role to increase the supply of 4-carbon carboxylic acids, which provided carbon skeletons for increased amino acid and protein synthesis. Higher protein content must have been responsible for increased metabolic processes including chlorophyll biosynthesis, photosynthesis, and respiration. Consequently, the PEPC-overexpressed transgenic plants had higher chlorophyll content, enhanced electron transport rate (ETR), lower non-photochemical quenching (NPQ) of chlorophyll a fluorescence, and a higher performance index (PI) than the vector control. Consistent with these observations, the rate of CO2 assimilation, the starch content, and the dry weight of PEPC-overexpressed plants increased by 14-18 %, 10-18 %, and 6.5-16 %, respectively. Significantly, transgenics were tolerant to salt stress as they had increased ability to synthesize amino acids, including the osmolyte proline. NaCl (150 mM)-treated transgenic plants had higher variable to maximum Chl a fluorescence (F v/F m) ratio, higher PI, higher ETR, and lower NPQ than the salt-treated vector controls. These results suggest that expression of C4 photosynthesis enzyme(s) in a C3 plant can improve its photosynthetic capacity with enhanced tolerance to salinity stress.


Asunto(s)
Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Zea mays/enzimología , Arabidopsis/metabolismo , Southern Blotting , Western Blotting , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Clorofila A , Fosfoenolpiruvato Carboxilasa/metabolismo , Tolerancia a la Sal , Zea mays/metabolismo
10.
Physiol Mol Biol Plants ; 22(3): 351-359, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27729721

RESUMEN

Uroporphyrinogen III methyl transferase (UPM1) and Sirohydrochlorin ferrochelatase (SIRB) are the important genes involved in the biosynthesis of siroheme, the prosthetic group of nitrite reductases (NiR) and sulfite reductases (SiR) involved in nitrogen and sulfur assimilation. Both UPM1 and SIRB could be potential candidate genes targeted for sustainable agriculture especially in N-deficient soil. The phylogenetic analysis revealed that these genes are highly conserved among algae, bryophytes and vascular plants including dicots and monocots. The Arabidopsis proteins UPM1 and SIRB have close similarity with Camelina sativa followed by Brassica napus, Brassica rapa, and Brassica oleracea of the family brassicaceae. The tissue specific expression studies revealed that both the gene are expressed in stem, flower and silique and have highest expression in leaves where the protein content is quite high. The in silico promoter analysis revealed the presence of several light-responsive elements like GATA box, G box, I box, SORLIP2, SORLIP5, SORLREP3 and SORLREP4. Therefore, expression of both the genes was minimal in etiolated seedlings and was upregulated in light. Photo-regulation of transcript abundance of UPM1 and SIRB involved in the biosynthesis of siroheme the cofactor involved in 6 electron reduction of NO2- and SO32- by NiR and SiR is crucial as the gene expression of latter two enzymes along with other N and S assimilatory enzymes are also modulated by light.

11.
Physiol Plant ; 153(3): 477-91, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25132047

RESUMEN

Chlorophyll biosynthesis in plants is subjected to modulation by various environmental factors. To understand the modulation of the chlorophyll (Chl) biosynthesis during greening process by salt, 100-200 mM NaCl was applied to the roots of etiolated rice seedlings 12 h prior to the transfer to light. Application of 200 mM NaCl to rice seedlings that were grown in light for further 72 h resulted in reduced dry matter production (-58%) and Chl accumulation (-66%). Ionic imbalance due to salinity stress resulted in additional downregulation (41-45%) of seedling dry weight, Chl and carotenoid contents over and above that of similar osmotic stress induced by polyethylene glycol. Downregulation of Chl biosynthesis may be attributed to decreased activities of Chl biosynthetic pathway enzymes, i.e. 5-aminolevulinic acid (ALA) dehydratase (EC-2.4.1.24), porphobilinogen deaminase (EC-4.3.1.8), coproporphyrinogen III oxidase (EC-1.3.3.3), protoporphyrinogen IX oxidase (EC-1.3.3.4), Mg-protoporphyrin IX chelatase (EC-6.6.1.1) and protochlorophyllide oxidoreductase (EC-1.3.33.1). Reduced enzymatic activities were due to downregulation of their protein abundance and/or gene expression in salt-stressed seedlings. The extent of downregulation of ALA biosynthesis nearly matched with that of protochlorophyllide and Chl to prevent the accumulation of highly photosensitive photodynamic tetrapyrroles that generates singlet oxygen under stress conditions. Although, ALA synthesis decreased, the gene/protein expression of glutamyl-tRNA reductase (EC-1.2.1.70) increased suggesting it may play a role in acclimation to salt stress. The similar downregulation of both early and late Chl biosynthesis intermediates in salt-stressed seedlings suggests a regulatory network of genes involved in tetrapyrrole biosynthesis.


Asunto(s)
Clorofila/biosíntesis , Regulación de la Expresión Génica de las Plantas , Oryza/fisiología , Cloruro de Sodio/farmacología , Aclimatación , Oscuridad , Regulación hacia Abajo , Etiolado , Luz , Oryza/efectos de los fármacos , Oryza/genética , Oryza/efectos de la radiación , Presión Osmótica , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de la radiación , Protoclorofilida/biosíntesis , Plantones/efectos de los fármacos , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Estrés Fisiológico
12.
Plant Biotechnol J ; 12(9): 1217-30, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25196090

RESUMEN

Despite the declarations and collective measures taken to eradicate hunger at World Food Summits, food security remains one of the biggest issues that we are faced with. The current scenario could worsen due to the alarming increase in world population, further compounded by adverse climatic conditions, such as increase in atmospheric temperature, unforeseen droughts and decreasing soil moisture, which will decrease crop yield even further. Furthermore, the projected increase in yields of C3 crops as a result of increasing atmospheric CO2 concentrations is much less than anticipated. Thus, there is an urgent need to increase crop productivity beyond existing yield potentials to address the challenge of food security. One of the domains of plant biology that promises hope in overcoming this problem is study of C3 photosynthesis. In this review, we have examined the potential bottlenecks of C3 photosynthesis and the strategies undertaken to overcome them. The targets considered for possible intervention include RuBisCO, RuBisCO activase, Calvin-Benson-Bassham cycle enzymes, CO2 and carbohydrate transport, and light reactions among many others. In addition, other areas which promise scope for improvement of C3 photosynthesis, such as mining natural genetic variations, mathematical modelling for identifying new targets, installing efficient carbon fixation and carbon concentrating mechanisms have been touched upon. Briefly, this review intends to shed light on the recent advances in enhancing C3 photosynthesis for crop improvement.


Asunto(s)
Carbono/metabolismo , Productos Agrícolas/fisiología , Fotosíntesis , Ciclo del Carbono , Ribulosa-Bifosfato Carboxilasa/metabolismo
13.
Plant Physiol ; 159(1): 433-49, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22419827

RESUMEN

Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of glutamate semialdehyde, 5-aminolevulinic acid, magnesium-porphyrins, and chlorophylls. Overexpression of CAO resulted in increased chlorophyll b synthesis and a decreased chlorophyll a/b ratio in low light-grown as well as high light-grown tobacco plants; this effect, however, was more pronounced in high light. The increased potential of the protochlorophyllide oxidoreductase activity and chlorophyll biosynthesis compensated for the usual loss of chlorophylls in high light. Increased chlorophyll b synthesis in CAO-overexpressed plants was accompanied not only by an increased abundance of light-harvesting chlorophyll proteins but also of other proteins of the electron transport chain, which led to an increase in the capture of light as well as enhanced (40%-80%) electron transport rates of photosystems I and II at both limiting and saturating light intensities. Although the quantum yield of carbon dioxide fixation remained unchanged, the light-saturated photosynthetic carbon assimilation, starch content, and dry matter accumulation increased in CAO-overexpressed plants grown in both low- and high-light regimes. These results demonstrate that controlled up-regulation of chlorophyll b biosynthesis comodulates the expression of several thylakoid membrane proteins that increase both the antenna size and the electron transport rates and enhance carbon dioxide assimilation, starch content, and dry matter accumulation.


Asunto(s)
Clorofila/biosíntesis , Luz , Nicotiana/enzimología , Oxigenasas/metabolismo , Fotosíntesis , Ácido Aminolevulínico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Transporte de Electrón , Activación Enzimática , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Oxigenasas/genética , Fenotipo , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/efectos de la radiación , Almidón/metabolismo , Proteínas de las Membranas de los Tilacoides/genética , Proteínas de las Membranas de los Tilacoides/metabolismo , Nicotiana/genética , Nicotiana/efectos de la radiación , Transgenes
14.
Plant Cell Environ ; 36(12): 2120-34, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23495675

RESUMEN

Plants have evolved a remarkable capacity to track and respond to fluctuations of light quality and intensity that influence photomorphogenesis facilitated through several photoreceptors, which include a small family of phytochromes. Rice seedlings grown on germination paper in red light for 48 h having their shoot bottom exposed had suppressed photomorphogenesis and were deficient in chlorophyll. Seedlings grown under identical light regime having their shoot bottom covered were green and accumulated chlorophyll. Further, etiolated seedlings with their shoot bottom exposed, when grown in 4 min red/far-red cycles for 48 h, accumulated chlorophyll demonstrating the reversal of suppression of photomorphogenesis by far-red light. It implicates the involvement of phytochrome. Immunoblot analysis showed the persistence of photolabile phytochrome A protein for 48 h in seedlings grown in red light with their shoot bottom exposed, suggesting its involvement in suppression of photomorphogenesis. This was further corroborated in phyA seedlings that turned green when grown in red light having their shoot bottom exposed. Calmodulin (CaM) antagonist N-(6-aminohexyl)-5-chloro-1-napthalene sulphonamide or trifluoperazine substantially restored photomorphogenesis both in the wild type (WT) and phyA demonstrating the involvement of CaM-dependent kinases in the down-regulation of the greening process. Results demonstrate that red light-induced suppression of photomorphogenesis, perceived in the shoot bottom, is a red high irradiance response of PhyA.


Asunto(s)
Luz , Morfogénesis/efectos de la radiación , Oryza/crecimiento & desarrollo , Oryza/efectos de la radiación , Fitocromo A/metabolismo , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Apoproteínas/metabolismo , Calmodulina/antagonistas & inhibidores , Calmodulina/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Immunoblotting , Peroxidación de Lípido/efectos de la radiación , Mutación/genética , Oryza/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Factores de Tiempo
15.
Plant Cell Environ ; 35(9): 1685-703, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22494411

RESUMEN

To understand the impact of water stress on the greening process, water stress was applied to 6-day-old etiolated seedlings of a drought-sensitive cultivar of rice (Oryza sativa), Pusa Basmati-1 by immersing their roots in 40 mm polyethylene glycol (PEG) 6000 (-0.69 MPa) or 50 mm PEG 6000 (-1.03 MPa) dissolved in half-strength Murashige and Skoog (MS)-nutrient-solution, 16 h prior to transfer to cool-white-fluorescent + incandescent light. Chlorophyll (Chl) accumulation substantially declined in developing water-stressed seedlings. Reduced Chl synthesis was due to decreased accumulation of chlorophyll biosynthetic intermediates, that is, glutamate-1-semialdehyde (GSA), 5-aminolevulinic acid, Mg-protoporphyrin IX monomethylester and protochlorophyllide. Although 5-aminolevulinic acid synthesis decreased, the gene expression and protein abundance of the enzyme responsible for its synthesis, GSA aminotransferase, increased, suggesting its crucial role in the greening process in stressful environment. The biochemical activities of Chl biosynthetic enzymes, that is, 5-aminolevulinic acid dehydratase, porphobilinogen deaminase, coproporphyrinogen III oxidase, porphyrinogen IX oxidase, Mg-chelatase and protochlorophyllide oxidoreductase, were down-regulated due to their reduced protein abundance/gene expression in water-stressed seedlings. Down-regulation of protochlorophyllide oxidoreductase resulted in impaired Shibata shift. Our results demonstrate that reduced synthesis of early intermediates, that is, GSA and 5-aminolevulinic acid, could modulate the gene expression of later enzymes of Chl biosynthesis pathway.


Asunto(s)
Clorofila/biosíntesis , Cloroplastos/metabolismo , Oryza/metabolismo , Plantones/metabolismo , Estrés Fisiológico , Agua/metabolismo , Biomasa , Vías Biosintéticas/genética , Carotenoides/metabolismo , Cloroplastos/enzimología , Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas , Immunoblotting , Oryza/enzimología , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/metabolismo , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo , Temperatura
16.
Rheumatol Int ; 32(8): 2377-82, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21644045

RESUMEN

Progression of rheumatoid arthritis (RA) and osteoarthritis (OA) is associated with inflammation and oxidative stress. Previous studies have shown that there was no difference between RA and OA patients regarding the percentages of the different lymphocytes subsets reflecting the abnormalities in T cells and its subsets that may contribute to the pathogenesis of OA as in RA. Therefore, the present study was aimed to analyze that whether disease activity of OA is able to affect a few serological and biochemical parameters in the same way as RA does or differently. The study was done on 36 asymptomatic controls (25 women), 28 patients with OA (20 women), 36 patients with RA (22 women). Patients with OA were screened according to radiological and clinical finding of Kellgren and Lawrence grade and ACR criteria and assessed by VAS and WOMAC score. Patients with RA were selected who were fulfilling 4/5 symptoms of ACR criteria, and their DAS28-CRP, VAS score, and RF positivity were evaluated. Participants of the groups were matched for sex, age, weight, and height (body mass index). The BMI of all three groups was also found to be the same (P > 0.05). The mean level of LDL, cholesterol, MDA, CRP, and triglyceride was significantly (P < 0.05 or P < 0.01) higher in both OA and RA as compared to control. The mean level of total lipid, cholesterol, MDA, CRP, and triglyceride was found to be significantly (P < 0.05 or P < 0.01) higher in RA as compared to OA. The pre-treatment CRP level of both groups of patients showed significant and direct relation with total lipid (r = 0.27, P < 0.05) and cholesterol (r = 0.66, P < 0.01). Inverse relation was observed between uric acid and creatinine (r = -0.26, P < 0.05) and cholesterol and HDL (r = -0.34, P < 0.01). Our study shows the similar trend in lipid profile and other parameters studied in both patients with OA and patients with RA with more pronounced changes in RA.


Asunto(s)
Artritis Reumatoide/sangre , Mediadores de Inflamación/sangre , Lípidos/sangre , Osteoartritis/sangre , Estrés Oxidativo , Análisis de Varianza , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Biomarcadores/sangre , Proteína C-Reactiva/análisis , Distribución de Chi-Cuadrado , Creatinina/sangre , Femenino , Humanos , India , Masculino , Malondialdehído/sangre , Persona de Mediana Edad , Osteoartritis/diagnóstico , Osteoartritis/tratamiento farmacológico , Osteoartritis/inmunología , Ácido Úrico/sangre
17.
Plant Mol Biol ; 76(3-5): 407-23, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21327516

RESUMEN

Photosynthesis in higher land plants is a complex process involving several proteins encoded by both nuclear and chloroplast genomes that require a highly coordinated gene expression. Significant changes in plastid differentiation and biochemical processes are associated with the deletion of chloroplast genes. In this study we report the genome-wide responses caused by the deletion of tobacco psaA and psbA genes coding core components of photosystem I (PSI) and photosystem II (PSII), respectively, generated through a chloroplast genetic engineering approach. Transcriptomic and quantitative proteomic analysis showed the down regulation of specific groups of nuclear and chloroplast genes involved in photosynthesis, energy metabolism and chloroplast biogenesis. Moreover, our data show simultaneous activation of several defense and stress responsive genes including those involved in reactive oxygen species (ROS) scavenging mechanisms. A major finding is the differential transcription of the plastome of deletion mutants: genes known to be transcribed by the plastid encoded polymerase (PEP) were generally down regulated while those transcribed by the nuclear encoded polymerase (NEP) were up regulated, indicating simultaneous activation of multiple signaling pathways in response to disruption of PSI and PSII complexes. The genome wide transcriptomic and proteomic analysis of the ∆psaA and ∆psbA deletion mutants revealed a simultaneous up and down regulation of the specific groups of genes located in nucleus and chloroplasts suggesting a complex circuitry involving both retrograde and anterograde signaling mechanisms responsible for the coordinated expression of nuclear and chloroplast genomes.


Asunto(s)
Eliminación de Gen , Perfilación de la Expresión Génica , Genoma de Planta , Nicotiana/genética , Proteínas de Plantas/genética , Proteoma , Secuencia de Bases , Cromatografía Liquida , Cartilla de ADN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Nicotiana/metabolismo , Nicotiana/fisiología
18.
Plant Cell Physiol ; 51(10): 1788-99, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20823341

RESUMEN

Perception of red light (400 µmol photon m²/s) by the shoot bottom turned off the greening process in wheat. To understand the signaling cascade leading to this photomorphogenic response, certain signaling components were probed in seedlings grown in different light regimes. Upon analysis the gene expression of heterotrimeric Gα and Gß were severely down-regulated in seedlings grown without vermiculite and having their shoot bottom exposed to red light (R/V-) and was similar to that of dark-grown seedlings. Supplementing the red-light-grown V- seedlings with blue light resulted in up-regulation of both Gα and Gß expression, suggesting that blue light is able to modulate G protein expression. Treatment of cytokinin analog benzyladenine to cytokinin-deficient red-light-grown R/V- seedlings resulted in up-regulation of gene expression of both Gα and Gß. To probe further, modulators of signal transduction pathway--AlF3 (G protein activator), LaCl3 (Ca(2+) channel blocker), NaF (nonspecific phosphatase inhibitor), or calmodulin (CaM) antagonists trifluoperazine (TFP) and N-(6-aminohexyl)-5-chloro-1-nafthalene-sulfonamide (W-7)--were added along with Hoagland solution to the roots of 4-day-old etiolated seedlings, grown on germination paper and transferred to red light. AlF3, LaCl3, NaF failed to elicit any photomorphogenic response. However, CaM antagonists TFP and W-7 significantly reversed the red-light-induced suppression of photomorphogenesis. Phosphorylation of proteins assayed in the absence or presence of CaM antagonist TFP revealed respective up-regulation or down-regulation of phosphorylation of several plastidic proteins in R/V- seedlings. These suggest that signal transduction of red light perceived by the shoot bottom to suppress photomorphogenesis is mediated by CaM-dependent protein kinases.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/metabolismo , Luz , Proteínas de Plantas/metabolismo , Transducción de Señal , Triticum/efectos de la radiación , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Citocininas/antagonistas & inhibidores , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión al GTP Heterotriméricas/genética , Fosforilación , Proteínas de Plantas/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/efectos de la radiación , Sulfonamidas/farmacología , Trifluoperazina/farmacología , Triticum/genética , Triticum/metabolismo
19.
Protoplasma ; 257(3): 841-851, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31909436

RESUMEN

Absorption of excess excitation energy induces overproduction of singlet oxygen (1O2) in plants. The major sources of singlet oxygen production are chlorophyll and its intermediates located in the chloroplast. Over-accumulation of the chlorophyll biosynthetic intermediate protochlorophyllide by the exogenous application of 5-aminolevulinic acid (ALA), the precursor of tetrapyrrole, induced singlet oxygen production in the plastidic membranes. Over-expression of protochlorophyllide oxidoreductase C (PORC) in Arabidopsis thaliana resulted in efficient light-induced photo-transformation of protochlorophyllide to chlorophyllide that limited the accumulation of protochlorophyllide. Consequently, the 1O2 generation decreased in the PORC overexpressors (PORCx) and their cell death was minimal. Conversely, porC-2 over-accumulated protochlorophyllide in response to ALA treatment and generated higher amounts of 1O2 in light and had highest cell death as monitored by Evans blue staining. The protoplasts isolated from PORCx plants, when treated with ALA, generated minimal amounts of 1O2 as revealed by singlet oxygen sensor green (SOSG) fluorescence emission from chloroplasts. Conversely, the protoplasts of porC-2 mutants under identical conditions generated the maximum SOSG fluorescence in their chloroplasts and cytosol surrounding the chloroplasts most likely due to the leakage from the organelle. The membrane blebbing, a hallmark of programmed cell death, was clearly visible in WT and porC-2 protoplasts. Similarly, the nick end labelling (TUNEL) assay revealed nicks in the DNA. The TUNEL-positive nuclei after 30 min of light exposure were highest in porC-2 and lowest in PORCx protoplasts. The results demonstrate that higher amounts of singlet oxygen produced in the chloroplasts play an important role in programmed cell death.


Asunto(s)
Apoptosis/genética , Arabidopsis/metabolismo , Cloroplastos/química , Oxígeno Singlete/química , Proteínas de Arabidopsis/metabolismo
20.
Funct Plant Biol ; 48(1): 8-27, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32702286

RESUMEN

Soil salinity, depending on its intensity, drives a challenged plant either to death, or survival with compromised productivity. On exposure to moderate salinity, plants can often survive by sacrificing some of their cells 'in target' following a route called programmed cell death (PCD). In animals, PCD has been well characterised, and involvement of mitochondria in the execution of PCD events has been unequivocally proven. In plants, mechanistic details of the process are still in grey area. Previously, we have shown that in green tissues of rice, for salt induced PCD to occur, the presence of active chloroplasts and light are equally important. In the present work, we have characterised the chloroplast proteome in rice seedlings at 12 and 24 h after salt exposure and before the time point where the signature of PCD was observed. We identified almost 100 proteins from chloroplasts, which were divided in to 11 categories based on the biological functions in which they were involved. Our results concerning the differential expression of chloroplastic proteins revealed involvement of some novel candidates. Moreover, we observed maximum phosphorylation pattern of chloroplastic proteins at an early time point (12 h) of salt exposure.


Asunto(s)
Oryza , Apoptosis , Cloroplastos , Proteoma , Cloruro de Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA