Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(14)2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32698547

RESUMEN

Disease diagnosis is a critical task which needs to be done with extreme precision. In recent times, medical data mining is gaining popularity in complex healthcare problems based disease datasets. Unstructured healthcare data constitutes irrelevant information which can affect the prediction ability of classifiers. Therefore, an effective attribute optimization technique must be used to eliminate the less relevant data and optimize the dataset for enhanced accuracy. Type 2 Diabetes, also called Pima Indian Diabetes, affects millions of people around the world. Optimization techniques can be applied to generate a reliable dataset constituting of symptoms that can be useful for more accurate diagnosis of diabetes. This study presents the implementation of a new hybrid attribute optimization algorithm called Enhanced and Adaptive Genetic Algorithm (EAGA) to get an optimized symptoms dataset. Based on readings of symptoms in the optimized dataset obtained, a possible occurrence of diabetes is forecasted. EAGA model is further used with Multilayer Perceptron (MLP) to determine the presence or absence of type 2 diabetes in patients based on the symptoms detected. The proposed classification approach was named as Enhanced and Adaptive-Genetic Algorithm-Multilayer Perceptron (EAGA-MLP). It is also implemented on seven different disease datasets to assess its impact and effectiveness. Performance of the proposed model was validated against some vital performance metrics. The results show a maximum accuracy rate of 97.76% and 1.12 s of execution time. Furthermore, the proposed model presents an F-Score value of 86.8% and a precision of 80.2%. The method is compared with many existing studies and it was observed that the classification accuracy of the proposed Enhanced and Adaptive-Genetic Algorithm-Multilayer Perceptron (EAGA-MLP) model clearly outperformed all other previous classification models. Its performance was also tested with seven other disease datasets. The mean accuracy, precision, recall and f-score obtained was 94.7%, 91%, 89.8% and 90.4%, respectively. Thus, the proposed model can assist medical experts in accurately determining risk factors of type 2 diabetes and thereby help in accurately classifying the presence of type 2 diabetes in patients. Consequently, it can be used to support healthcare experts in the diagnosis of patients affected by diabetes.


Asunto(s)
Algoritmos , Diabetes Mellitus Tipo 2 , Redes Neurales de la Computación , Minería de Datos , Diabetes Mellitus Tipo 2/diagnóstico , Humanos
2.
Digit Health ; 10: 20552076241256732, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165388

RESUMEN

Objective: The modern era of cognitive intelligence in clinical space has led to the rise of 'Medical Cognitive Virtual Agents' (MCVAs) which are labeled as intelligent virtual assistants interacting with users in a context-sensitive and ambient manner. They aim to augment users' cognitive capabilities thereby helping both patients and medical experts in providing personalized healthcare like remote health tracking, emergency healthcare and robotic diagnosis of critical illness, among others. The objective of this study is to explore the technical aspects of MCVA and their relevance in modern healthcare. Methods: In this study, a comprehensive and interpretable analysis of MCVAs are presented and their impacts are discussed. A novel system framework prototype based on artificial intelligence for MCVA is presented. Architectural workflow of potential applications of functionalities of MCVAs are detailed. A novel MCVA relevance survey analysis was undertaken during March-April 2023 at Bhubaneswar, Odisha, India to understand the current position of MCVA in society. Results: Outcome of the survey delivered constructive results. Majority of people associated with healthcare showed their inclination towards MCVA. The curiosity for MCVA in Urban zone was more than in rural areas. Also, elderly citizens preferred using MCVA more as compared to youths. Medical decision support emerged as the most preferred application of MCVA. Conclusion: The article established and validated the relevance of MCVA in modern healthcare. The study showed that MCVA is likely to grow in future and can prove to be an effective assistance to medical experts in coming days.

3.
PLoS One ; 17(8): e0272383, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35951589

RESUMEN

Collaborative modelling of the Internet of Things (IoT) with Artificial Intelligence (AI) has merged into the Intelligence of Things concept. This recent trend enables sensors to track required parameters and store accumulated data in cloud storage, which can be further utilized by AI based predictive models for automatic decision making. In a smart and sustainable environment, effective waste management is a concern. Poor regulation of waste in surrounding areas leads to rapid spread of contagious disease risks. Traditional waste object management requires more working staff, increases effort, consumes time and is relatively ineffective. In this research, an Intelligence of Things Enabled Smart Waste Management (IoT-SWM) model with predictive capabilities is developed. Here, local sinks (LS) are deployed in specified locations. At every instant, the current status of smart bins in each LS is notified to users to determine the priority level of LS to be emptied. Based on aggregated sensor values for the three smart bins, LS weight and poison gas value, the priority order of emptying LS is computed, and decision is made whether to notify the users with an alert message or not. It also helps in predicting the LS, which is likely to be filled up at a faster rate based on assigned timestamp. This model is implemented in real time with many LS and it was observed that bins, which were close to more crowded sites filled up faster compared to sparse populated areas. Random forest algorithm was used to predict whether an alert notification is to be sent or not. An average mean of 95.8% accuracy was noted while using 60 decision trees in random forest algorithm. The average mean execution latency recorded for training and testing sets is 13.06 sec and 14.39 sec respectively. Observed accuracy rate, precision, recall and f1-score parameters were 95.8%, 96.5%, 98.5% and 97.2% respectively. Model buildup and the validation time computed were 3.26 sec and 4.25 sec respectively. It is also noted that at a threshold value of 0.93 in LS level, the maximum accuracy rate reached was 95.8%. Thus, based on the prediction of random forest approach, a decision to notify the users is taken. Obtained outcome indicates that the waste level can be efficiently determined, and the overflow of dustbins can be easily checked in time.


Asunto(s)
Inteligencia Artificial , Administración de Residuos , Algoritmos , Nube Computacional , Humanos , Inteligencia
4.
Front Public Health ; 9: 795007, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34976936

RESUMEN

Human emotions affect psychological health to a great level. Positive emotions relate to health improvement; whereas negative emotions may aggravate psychological disorders such as anxiety, stress, and depression. Although there exist several computational methods to predict psychological disorders, most of them provide a black-box view of uncertainty. This research involves developing a novel predictive model for multi class psychological risk recognition with an accurate explainable interface. Standard questionnaires are utilized as data set and a new approach called a Q-Prioritization is employed to drop insignificant questions from the data set. Moreover, a novel balanced decision tree method based on repetitive oversampling is applied for the training and testing of the model. Predictive nature along with its contributing factors are interpreted with three techniques such as permuted feature importance, contrastive explanation, and counterfactual method, which together form a reasoning engine. The prediction outcome generated an impressive performance with an aggregated accuracy of 98.25%. The mean precision, recall, and F-score metric recorded were 0.98, 0.977, and 0.979, respectively. Also, it was noted that without applying Q-Prioritization, the accuracy significantly drops to 90.25%. The error rate observed with our model was only 0.026. The proposed multi-level psychological disorder predictive model can successfully serve as an assistive deployment for medical experts in the effective treatment of mental health.


Asunto(s)
Trastornos Mentales , Árboles de Decisión , Humanos , Inteligencia , Trastornos Mentales/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA