Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biomed Mater Res A ; 110(5): 1021-1035, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34967101

RESUMEN

Decellularized extracellular matrices (DECM) are among the most common types of materials used in tissue engineering due to their cell instructive properties, biodegradability, and accessibility. Particularly in cartilage, a natural collagen type II matrix can be a promising means to provide the necessary cues and support for chondrogenic stem and progenitor cells (CSPCs). However, efficient remodeling of the transplanted DECM is largely dependent on the host immune response, with macrophages playing the central role in orchestrating both inflammatory and regenerative processes. Here we assessed the reaction of human primary macrophages to the cartilage DECM. Our findings show that the xenogeneic collagen matrix can elicit a mixed response in human macrophages, whereby the inflammatory response (M1) and the activation of remodeling (M2) type of macrophages are both present. Additionally, we demonstrate the inhibitory effect of macrophage response on the migratory capacity of human CSPCs. We further show that the inflammatory reaction of macrophages to the cartilage DECM, as well as the resulting inhibitory effects on CSPC migration, can be attenuated by interleukin-4 (IL-4). Finally, we demonstrate that IL-4 can effectively bind the matrix, thereby modulating macrophage response by reducing the inflammatory reaction and inducing the M2 phenotype.


Asunto(s)
Matriz Extracelular , Interleucina-4 , Cartílago/fisiología , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-4/metabolismo , Regeneración , Ingeniería de Tejidos/métodos
2.
Cells ; 10(8)2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34440921

RESUMEN

Transplantation of xenogenic porcine chondrocytes could represent a future strategy for the treatment of human articular cartilage defects. Major obstacles are humoral and cellular rejection processes triggered by xenogenic epitopes like α-1,3-Gal and Neu5Gc. Besides knockout (KO) of genes responsible for the biosynthesis of respective epitopes (GGTA1 and CMAH), transgenic expression of human complement inhibitors and anti-apoptotic as well as anti-inflammatory factors (CD46, CD55, CD59, TNFAIP3 and HMOX1) could synergistically prevent hyperacute xenograft rejection. Therefore, chondrocytes from different strains of single- or multi-genetically modified pigs were characterized concerning their protection from xenogeneic complement activation. Articular chondrocytes were isolated from the knee joints of WT, GalTKO, GalT/CMAH-KO, human CD59/CD55//CD46/TNFAIP3/HMOX1-transgenic (TG), GalTKO/TG and GalT/CMAHKO/TG pigs. The tissue-specific effectiveness of the genetic modifications was tested on gene, protein and epitope expression level or by functional assays. After exposure to 20% and 40% normal human serum (NHS), deposition of C3b/iC3b/C3c and formation of the terminal complement complex (TCC, C5b-9) was quantified by specific cell ELISAs, and generation of the anaphylatoxin C5a by ELISA. Chondrocyte lysis was analyzed by Trypan Blue Exclusion Assay. In all respective KO variants, the absence of α -1,3-Gal and Neu5Gc epitope was verified by FACS analysis. In chondrocytes derived from TG animals, expression of CD55 and CD59 could be confirmed on gene and protein level, TNFAIP3 on gene expression level as well as by functional assays and CD46 only on gene expression level whereas transgenic HMOX1 expression was not evident. Complement activation in the presence of NHS indicated mainly effective although incomplete protection against C3b/iC3b/C3c deposition, C5a-generation and C5b-9 formation being lowest in single GalTKO. Chondrocyte viability under exposure to NHS was significantly improved even by single GalTKO and completely preserved by all other variants including TG chondrocytes without KO of xenoepitopes.


Asunto(s)
Enfermedades Óseas/terapia , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Trasplante Heterólogo/métodos , Animales , Animales Modificados Genéticamente , Enfermedades Óseas/genética , Antígenos CD55/genética , Antígenos CD55/metabolismo , Antígenos CD59/genética , Antígenos CD59/metabolismo , Cartílago Articular/patología , Células Cultivadas , Condrocitos/citología , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Expresión Génica , Técnicas de Inactivación de Genes , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Porcinos , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo
3.
Biomed Tech (Berl) ; 62(5): 481-486, 2017 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27701132

RESUMEN

An automated bioreactor system for three-dimensional (3D) cultivation of facial cartilage replacement matrices (e.g. whole human auricles) with automatised medium exchange, gas flow and temperature control was developed. The measurement of O2 saturation and pH value in the medium was performed with a non-invasive optical method. The whole system can be observed via remote monitoring worldwide. First results demonstrated that the complete system remained sterile throughout a period of 42 days. Human chondrocytes migrated into the employed cartilage replacement matrix consisting of decellularised porcine nasoseptal cartilage (pNSC). Furthermore, an improved migration and new synthesis of aggrecan was detected. A first evaluation of the system was conducted by comparison of the results from laboratory analysis with computational fluid dynamics (CFD).


Asunto(s)
Cartílago/fisiología , Condrocitos/citología , Ingeniería de Tejidos/métodos , Animales , Reactores Biológicos , Cartílago/química , Condrocitos/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA