Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 132(6): 921-2, 2008 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-18358804

RESUMEN

Most vertebrates synthesize vitamin C (ascorbate) de novo from glucose, but humans and certain other mammals cannot. In this issue, Montel-Hagen et al. (2008) demonstrate that erythrocytes from these ascorbate auxotrophs switch the preference of their glucose transporter Glut1 from glucose to dehydroascorbate (DHA), the oxidized form of vitamin C. This substrate preference switch is mediated by the membrane protein stomatin and is an evolutionary adaptation to vitamin C deficiency.


Asunto(s)
Ácido Deshidroascórbico/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Animales , Ácido Ascórbico/metabolismo , Eritrocitos/metabolismo , Humanos , Mamíferos , Proteínas de la Membrana/metabolismo
2.
Rev Infirm ; 71(286): 38-39, 2022 Dec.
Artículo en Francés | MEDLINE | ID: mdl-36642473

RESUMEN

As the human immunodeficiency virus (HIV) infection has become a chronic disease, the question of becoming a parent arises for HIV-positive people. There are several answers to this question, depending on the situation. Here is an overview of the risks and possibilities of procreation with HIV.


Asunto(s)
Infecciones por VIH , Reproducción , Humanos , Padres
3.
J Biol Chem ; 295(32): 11002-11020, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32518166

RESUMEN

Mitochondrial iron import is essential for iron-sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member 37 (Slc25a37), is highly expressed in sites of erythropoiesis, and whole-body Slc25a37 deletion leads to lethality. Here, we report that mice with a deletion of Slc25a28 (encoding Mfrn2) are born at expected Mendelian ratios, but show decreased male fertility due to reduced sperm numbers and sperm motility. Mfrn2-/- mice placed on a low-iron diet exhibited reduced mitochondrial manganese, cobalt, and zinc levels, but not reduced iron. Hepatocyte-specific loss of Slc25a37 (encoding Mfrn1) in Mfrn2-/- mice did not affect animal viability, but resulted in a 40% reduction in mitochondrial iron and reduced levels of oxidative phosphorylation proteins. Placing animals on a low-iron diet exaggerated the reduction in mitochondrial iron observed in liver-specific Mfrn1/2-knockout animals. Mfrn1-/-/Mfrn2-/- bone marrow-derived macrophages or skin fibroblasts in vitro were unable to proliferate, and overexpression of Mfrn1-GFP or Mfrn2-GFP prevented this proliferation defect. Loss of both mitoferrins in hepatocytes dramatically reduced regeneration in the adult mouse liver, further supporting the notion that both mitoferrins transport iron and that their absence limits proliferative capacity of mammalian cells. We conclude that Mfrn1 and Mfrn2 contribute to mitochondrial iron homeostasis and are required for high-affinity iron import during active proliferation of mammalian cells.


Asunto(s)
Proteínas de Transporte de Catión/fisiología , Proliferación Celular/fisiología , Regeneración Hepática/fisiología , Proteínas de Transporte de Membrana/fisiología , Animales , Homeostasis , Hierro/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo
4.
Am J Hematol ; 96(8): 1008-1016, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33844865

RESUMEN

The role of iron in the formation and functioning of erythrocytes, and to a lesser degree of white blood cells, is well established, but the relationship between iron and platelets is less documented. Physiologically, iron plays an important role in hematopoiesis, including thrombopoiesis; iron levels direct, together with genetic factors, the lineage commitment of megakaryocytic/erythroid progenitors toward either megakaryocyte or erythroid progenitors. Megakaryocytic iron contributes to cellular machinery, especially energy production in platelet mitochondria. Thrombocytosis, possibly favoring vascular thrombosis, is a classical feature observed with abnormally low total body iron stores (mainly due to blood losses or decreased duodenal iron intake), but thrombocytopenia can also occur in severe iron deficiency anemia. Iron sequestration, as seen in inflammatory conditions, can be associated with early thrombocytopenia due to platelet consumption and followed by reactive replenishment of the platelet pool with possibility of thrombocytosis. Iron overload of genetic origin (hemochromatosis), despite expected mitochondrial damage related to ferroptosis, has not been reported to cause thrombocytopenia (except in case of high degree of hepatic fibrosis), and iron-related alteration of platelet function is still a matter of debate. In acquired iron overload (of transfusional and/or dyserythropoiesis origin), quantitative or qualitative platelet changes are difficult to attribute to iron alone due to the interference of the underlying hematological conditions; likewise, hematological improvement, including increased blood platelet counts, observed under iron oral chelation is likely to reflect mechanisms other than the sole beneficial impact of iron depletion.


Asunto(s)
Plaquetas/metabolismo , Hierro/sangre , Humanos
5.
Cell Mol Life Sci ; 76(2): 259-281, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30343319

RESUMEN

The human Far Upstream Element (FUSE) Binding Protein 1 (FUBP1) is a multifunctional DNA- and RNA-binding protein involved in diverse cellular processes. FUBP1 is a master regulator of transcription, translation, and RNA splicing. FUBP1 has been identified as a potent pro-proliferative and anti-apoptotic factor by modulation of complex networks. FUBP1 is also described either as an oncoprotein or a tumor suppressor. Especially, FUBP1 overexpression is observed in a growing number of cancer and leads to a deregulation of targets that includes the fine-tuned MYC oncogene. Moreover, recent loss-of-function analyses of FUBP1 establish its essential functions in hematopoietic stem cell maintenance and survival. Therefore, FUBP1 appears as an emerging suspect in hematologic disorders in addition to solid tumors. The scope of the present review is to describe the advances in our understanding of the molecular basis of FUBP1 functions in normal cells and carcinogenesis. We also delineate the recent progresses in the understanding of the master role of FUBP1 in normal and pathological hematopoiesis. We conclude that FUBP1 is not only worth studying biologically but is also of clinical relevance through its pivotal role in regulating multiple cellular processes and its involvement in oncogenesis.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias/patología , Biomarcadores de Tumor/metabolismo , Transformación Celular Neoplásica/genética , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , ADN/química , ADN/metabolismo , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Homeodominio/metabolismo , Humanos , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Unión al ARN , Proteasas Ubiquitina-Específicas/metabolismo
6.
Nucleic Acids Res ; 46(21): 11214-11228, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30500954

RESUMEN

Runt-related transcription factor 1 (RUNX1) is a well-known master regulator of hematopoietic lineages but its mechanisms of action are still not fully understood. Here, we found that RUNX1 localizes on active chromatin together with Far Upstream Binding Protein 1 (FUBP1) in human B-cell precursor lymphoblasts, and that both factors interact in the same transcriptional regulatory complex. RUNX1 and FUBP1 chromatin localization identified c-KIT as a common target gene. We characterized two regulatory regions, at +700 bp and +30 kb within the first intron of c-KIT, bound by both RUNX1 and FUBP1, and that present active histone marks. Based on these regions, we proposed a novel FUBP1 FUSE-like DNA-binding sequence on the +30 kb enhancer. We demonstrated that FUBP1 and RUNX1 cooperate for the regulation of the expression of the oncogene c-KIT. Notably, upregulation of c-KIT expression by FUBP1 and RUNX1 promotes cell proliferation and renders cells more resistant to the c-KIT inhibitor imatinib mesylate, a common therapeutic drug. These results reveal a new mechanism of action of RUNX1 that implicates FUBP1, as a facilitator, to trigger transcriptional regulation of c-KIT and to regulate cell proliferation. Deregulation of this regulatory mechanism may explain some oncogenic function of RUNX1 and FUBP1.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Regulación Leucémica de la Expresión Génica , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas de Unión al ARN/genética , Animales , Antineoplásicos/farmacología , Secuencia de Bases , Sitios de Unión , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromatina/química , Cromatina/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Mesilato de Imatinib/farmacología , Ratones , Ratones Endogámicos NOD , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Células Precursoras de Linfocitos B/efectos de los fármacos , Células Precursoras de Linfocitos B/metabolismo , Células Precursoras de Linfocitos B/patología , Cultivo Primario de Células , Unión Proteica , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Transcripción Genética , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Transgenic Res ; 28(Suppl 2): 125-133, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31321695

RESUMEN

Agriculture has benefited from various conventional techniques for plant breeding, including chemical- or radiation-induced mutagenesis, and to some extent from transgenesis. Genome editing techniques are likely to allow straightforward, cost-effective and efficient gene-specific modifications for identified genetic traits associated to agronomic interest. As for previous plant breeding techniques, genome editing techniques need an appraisal for unintended effects. Hence, an evaluation of potential specific risks associated with genome editing must be considered. The Scientific Committee of the High Council for biotechnology (HCB), using a broad theoretical and literature-based approach, identified three categories of points to consider in terms of hazards in health and environment, as compared to conventional breeding: (1) technical unintended effects related to effector persistence as well as risks associated with off-target modifications or other unintended genome modifications, (2) risks arising from the desired trait and its novelty in the plant, and (3) risks associated with the potential modification of plant breeding practices, owing to efficacy and technical ease-of-use of genome editing (acceleration), be it for single traits or for combined modifications (multiplex genome editing). Due to novelty, HCB also envisions the need for specific risk assessment and management.


Asunto(s)
Productos Agrícolas/genética , Edición Génica/métodos , Genoma de Planta/genética , Plantas Modificadas Genéticamente/genética , ADN/genética , Ingeniería Genética/tendencias , Humanos , Fenotipo , Fitomejoramiento , Plantas Modificadas Genéticamente/crecimiento & desarrollo
9.
Blood ; 126(15): 1802-12, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26320102

RESUMEN

CD9, a member of the tetraspanin family, has been implicated in hematopoietic and leukemic stem cell homing. We investigated the role of CD9 in the dissemination of B acute lymphoblastic leukemia (B-ALL) cells, by stably downregulating CD9 in REH and NALM6 cells. CD9 expression was associated with higher levels of REH cell adhesion to fibronectin and C-X-C motif chemokine receptor 4 (CXCR4)-mediated migration. Death occurred later in NOD/SCID mice receiving REH cells depleted of CD9 for transplantation than in mice receiving control cells. After C-X-C motif chemokine ligand 12 (CXCL12) stimulation, CD9 promoted the formation of long cytoplasmic actin-rich protrusions. We demonstrated that CD9 enhanced RAC1 activation, in both REH cells and blasts from patients. Conversely, the overexpression of a competing CD9 C-terminal tail peptide in REH cytoplasm decreased RAC1 activation and cytoplasmic extension formation in response to CXCL12. Finally, the inhibition of RAC1 activation decreased migration in vitro, and the depletion of RAC1 protein from transplanted REH cells increased mouse survival. Furthermore, a testis-conditioned medium induced the migration of REH and NALM6 cells, and this migration was impeded by an anti-CD9 antibody. The level of CD9 expression also influenced the homing of these cells in mouse testes. These findings demonstrate, for the first time, that CD9 plays a key role in the CXCR4-mediated migration and engraftment of B-ALL cells in the bone marrow or testis, through RAC1 activation.


Asunto(s)
Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Neuropéptidos/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Receptores CXCR4/metabolismo , Tetraspanina 29/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Apoptosis , Western Blotting , Médula Ósea/metabolismo , Médula Ósea/patología , Adhesión Celular , Proliferación Celular , Quimiocina CXCL12/metabolismo , Humanos , Inmunoprecipitación , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Testículo/metabolismo , Testículo/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Blood ; 117(20): 5494-502, 2011 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21310927

RESUMEN

Mitoferrin1 is 1 of 2 homologous mitochondrial iron transporters and is required for mitochondrial iron delivery in developing erythroid cells. We show that total deletion of Mfrn1 in embryos leads to embryonic lethality. Selective deletion of Mfrn1 in adult hematopoietic tissues leads to severe anemia because of a deficit in erythroblast formation. Deletion of Mfrn1 in hepatocytes has no phenotype or biochemical effect under normal conditions. In the presence of increased porphyrin synthesis, however, deletion of Mfrn1 in hepatocytes results in a decreased ability to convert protoporphyrin IX into heme, leading to protoporphyria, cholestasis, and bridging cirrhosis. Our results show that the activity of mitoferrin1 is required to manage an increase in heme synthesis. The data also show that alterations in heme synthesis within hepatocytes can lead to protoporphyria and hepatotoxicity.


Asunto(s)
Anemia/etiología , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/genética , Protoporfiria Eritropoyética/etiología , Anemia/genética , Animales , Secuencia de Bases , Cartilla de ADN/genética , Pérdida del Embrión/genética , Femenino , Marcación de Gen , Hemo/biosíntesis , Hepatocitos/metabolismo , Hierro/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Embarazo , Protoporfiria Eritropoyética/genética , Protoporfirinas/metabolismo
12.
Asian Bioeth Rev ; 15(2): 189-204, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37035482

RESUMEN

Genome editing, for instance by CRISPR-Cas, is a major advancement of the last 10 years in medicine but questions ethically our practices. In particular, human embryo heritable genome editing is a source of great controversy. We explored how this ethical question was debated in the literature from PubMed database, in a period of 4 years (2016-2020) around the announcement of the 'CRISPR babies' Chinese experiment in November 2018. We evaluated the weight of the arguments for and against this topic, through an analysis of reviews published on this question. The most important arguments come from the technical perspective: safety issues and benefits, putative long-term effects on the future generations and the need to assess this aspect. Next, foreseeable clinical benefits and the alternatives to these methods are discussed. The number of people that would benefit from such techniques is also considered. However, social and anthropological issues are addressed in a more disparate way. Parenthood and desire for children are sometimes overlooked. Few authors mention social justice, stigmatisation and equality of access. Consent and information are more clearly addressed, as well as the question of the relationship between generations. Finally, the effects on the nature of humankind or human species are far from being consensual; the risks of enhancement, eugenics and transhumanism are raised. We conclude that the risks associated with the immaturity of the technique were at the forefront of the ethical debate on human embryo heritable genome editing. Their consequences were seen as more immediate and easier to handle than those of sociological or anthropological projections, which are more speculative in nature. Supplementary Information: The online version contains supplementary material available at 10.1007/s41649-022-00234-1.

13.
Curr Res Transl Med ; 71(4): 103409, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38091642

RESUMEN

Myelodysplastic neoplasms (MDS) are clonal hematopoietic neoplasms. Chromosomal abnormalities (CAs) are detected in 40-45% of de novo MDS and up to 80% of post-cytotoxic therapy MDS (MDS-pCT). Lately, several changes appeared in World Health Organization (WHO) classification and International Consensus Classification (ICC). The novel 'biallelic TP53 inactivation' (also called 'multi-hit TP53') MDS entity requires systematic investigation of TP53 locus (17p13.1). The ICC maintains CA allowing the diagnosis of MDS without dysplasia (del(5q), del(7q), -7 and complex karyotype). Deletion 5q is the only CA, still representing a low blast class of its own, if isolated or associated with one additional CA other than -7 or del(7q) and without multi-hit TP53. It represents one of the most frequent aberrations in adults' MDS, with chromosome 7 aberrations, and trisomy 8. Conversely, translocations are rarer in MDS. In children, del(5q) is very rare while -7 and del(7q) are predominant. Identification of a germline predisposition is key in childhood MDS. Aberrations of chromosomes 5, 7 and 17 are the most frequent in MDS-pCT, grouped in complex karyotypes. Despite the ever-increasing importance of molecular features, cytogenetics remains a major part of diagnosis and prognosis. In 2022, a molecular international prognostic score (IPSS-M) was proposed, combining the prognostic value of mutated genes to the previous scoring parameters (IPSS-R) including cytogenetics, still essential. A karyotype on bone marrow remains mandatory at diagnosis of MDS with complementary molecular analyses now required. Analyses with FISH or other technologies providing similar information can be necessary to complete and help in case of karyotype failure, for doubtful CA, for clonality assessment, and for detection of TP53 deletion to assess TP53 biallelic alterations.


Asunto(s)
Neoplasias Hematológicas , Síndromes Mielodisplásicos , Adulto , Niño , Humanos , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , Deleción Cromosómica , Trisomía , Neoplasias Hematológicas/genética , Análisis Citogenético
14.
J Mol Biol ; 435(8): 168045, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906061

RESUMEN

The detection of structural chromosomal abnormalities (SCA) is crucial for diagnosis, prognosis and management of many genetic diseases and cancers. This detection, done by highly qualified medical experts, is tedious and time-consuming. We propose a highly performing and intelligent method to assist cytogeneticists to screen for SCA. Each chromosome is present in two copies that make up a pair of chromosomes. Usually, SCA are present in only one copy of the pair. Convolutional neural networks (CNN) with Siamese architecture are particularly relevant for evaluating similarities between two images, which is why we used this method to detect abnormalities between both chromosomes of a given pair. As a proof-of-concept, we first focused on a deletion occurring on chromosome 5 (del(5q)) observed in hematological malignancies. Using our dataset, we conducted several experiments without and with data augmentation on seven popular CNN models. Overall, performances obtained were very relevant for detecting deletions, particularly with Xception and InceptionResNetV2 models achieving 97.50% and 97.01% of F1-score, respectively. We additionally demonstrated that these models successfully recognized another SCA, inversion inv(3), which is one of the most difficult SCA to detect. The performance improved when the training was applied on inversion inv(3) dataset, achieving 94.82% of F1-score. The technique that we propose in this paper is the first highly performing method based on Siamese architecture that allows the detection of SCA. Our code is publicly available at: https://github.com/MEABECHAR/ChromosomeSiameseAD.


Asunto(s)
Aberraciones Cromosómicas , Enfermedades Genéticas Congénitas , Neoplasias , Redes Neurales de la Computación , Humanos , Cromosomas/genética , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Neoplasias/diagnóstico , Neoplasias/genética , Conjuntos de Datos como Asunto
15.
Bull Cancer ; 110(3): 331-335, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36775700

RESUMEN

This article highlights the presentations from the 2021 scientific meeting of the Club Hematopoiesis and Oncogenesis. This annual meeting focuses on hematopoiesis and oncogenic mechanisms. Various topics were presented: expansion of hematopoietic stem cells with in vivo and ex vivo strategies, the role of the hematopoietic stem cell niches in aging and leukemic resistance, the crossroad between hematology and immunology, the importance of the metabolism in normal hematopoiesis and hematopoietic defects, solid tumors and oncogenesis, the noncoding genome, inflammation in monocyte differentiation and leukemia, and importantly, the recent advances in myeloid malignancies, lymphoid leukemia and lymphoma.


Asunto(s)
Leucemia , Linfoma , Humanos , Hematopoyesis/genética , Células Madre Hematopoyéticas , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología
16.
Blood ; 116(22): 4657-64, 2010 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-20688958

RESUMEN

Ferroportin (Fpn) is the only known iron exporter in vertebrate cells and plays a critical role in iron homeostasis regulating cytosolic iron levels and exporting iron to plasma. Ferroportin1 (FPN1) expression can be transcriptionally regulated by iron as well as other transition metals. Fpn can also be posttranslationally regulated by hepcidin-mediated internalization and degradation. We demonstrate that zinc and cadmium induce FPN1 transcription through the action of Metal Transcription Factor-1 (MTF-1). These transition metals induce MTF-1 translocation into the nucleus. Zinc leads to MTF-1 binding to the FPN1 promoter, while iron does not. Silencing of MTF-1 reduces FPN1 transcription in response to zinc but not in response to iron. The mouse FPN1 promoter contains 2 MTF-1 binding sites and mutation of those sites affects the zinc and cadmium-dependent expression of a FPN1 promoter reporter construct. We demonstrate that Fpn can transport zinc and can protect zinc sensitive cells from high zinc toxicity.


Asunto(s)
Cadmio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Zinc/metabolismo , Animales , Núcleo Celular/metabolismo , Cobalto/metabolismo , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Regiones Promotoras Genéticas , Transporte de Proteínas , ARN Mensajero/genética , Factores de Transcripción/genética , Transfección , Factor de Transcripción MTF-1
17.
Diagnostics (Basel) ; 12(7)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35885562

RESUMEN

Myelodysplastic syndromes (MDS) are considered to be diseases associated with splicing defects. A large number of genes involved in the pre-messenger RNA splicing process are mutated in MDS. Deletion of 5q and 7q are of diagnostic value, and those chromosome regions bear the numbers of splicing genes potentially deleted in del(5q) and del(7q)/-7 MDS. In this review, we present the splicing genes already known or suspected to be implicated in MDS pathogenesis. First, we focus on the splicing genes located on chromosome 5 (HNRNPA0, RBM27, RBM22, SLU7, DDX41), chromosome 7 (LUC7L2), and on the SF3B1 gene since both chromosome aberrations and the SF3B1 mutation are the only genetic abnormalities in splicing genes with clear diagnostic values. Then, we present and discuss other splicing genes that are showing a prognostic interest (SRSF2, U2AF1, ZRSR2, U2AF2, and PRPF8). Finally, we discuss the haploinsufficiency of splicing genes, especially from chromosomes 5 and 7, the important amplifier process of splicing defects, and the cumulative and synergistic effect of splicing genes defects in the MDS pathogenesis. At the time, when many authors suggest including the sequencing of some splicing genes to improve the diagnosis and the prognosis of MDS, a better understanding of these cooperative defects is needed.

18.
Cancers (Basel) ; 14(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35158909

RESUMEN

RNA-Binding Proteins (RBP) are very diverse and cover a large number of functions in the cells. This review focuses on RBM22, a gene encoding an RBP and belonging to the RNA-Binding Motif (RBM) family of genes. RBM22 presents a Zinc Finger like and a Zinc Finger domain, an RNA-Recognition Motif (RRM), and a Proline-Rich domain with a general structure suggesting a fusion of two yeast genes during evolution: Cwc2 and Ecm2. RBM22 is mainly involved in pre-mRNA splicing, playing the essential role of maintaining the conformation of the catalytic core of the spliceosome and acting as a bridge between the catalytic core and other essential protein components of the spliceosome. RBM22 is also involved in gene regulation, and is able to bind DNA, acting as a bona fide transcription factor on a large number of target genes. Undoubtedly due to its wide scope in the regulation of gene expression, RBM22 has been associated with several pathologies and, notably, with the aggressiveness of cancer cells and with the phenotype of a myelodysplastic syndrome. Mutations, enforced expression level, and haploinsufficiency of RBM22 gene are observed in those diseases. RBM22 could represent a potential therapeutic target in specific diseases, and, notably, in cancer.

19.
Leuk Res ; 123: 106964, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36335655

RESUMEN

Acute lymphoblastic leukemias (ALL) are the most frequent cancer in children and derive most often from B-cell precursors. Current survival rates roughly reach 90% at 10 years from diagnosis. However, 15-20% of children still relapse with a significant risk of death. Our previous work showed that the transmembrane protein CD9 plays a major role in lymphoblasts migration into sanctuary sites, especially in testis, through the activation of RAC1 signaling upon blasts stimulation with C-X-C chemokine ligand 12 (CXCL12). Here, we identified common factors shared by the bone marrow and extramedullary niches which could upregulate CD9 expression and function. We found that low oxygen levels enhance CD9 expression both at mRNA and protein levels. We further determined that Hypoxia Inducible Factor 1α (HIF1α), the master transcription factor involved in hypoxia response, binds directly CD9 promoter and induce CD9 transcription. We also showed that CD9 protein is crucial for leukemic cell adhesion and migration at low oxygen levels, possibly through its action on RAC1 signaling. Mouse xenograft experiments indicate that HIF1α signaling pathway promotes ALL cells engraftment in a CD9-dependent manner. The present work increments our understanding of CD9 implication in ALL pathogenesis.


Asunto(s)
Hipoxia , Transducción de Señal , Masculino , Humanos , Ratones , Animales , Tetraspanina 29/genética , Tetraspanina 29/metabolismo , Adhesión Celular , Oxígeno
20.
Cancers (Basel) ; 13(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34771553

RESUMEN

Myelodysplastic syndromes (MDSs) are heterogeneous for their morphology, clinical characteristics, survival of patients, and evolution to acute myeloid leukemia. Different prognostic scoring systems including the International Prognostic Scoring System (IPSS), the Revised IPSS, the WHO Typed Prognostic Scoring System, and the Lower-Risk Prognostic Scoring System have been introduced for categorizing the highly variable clinical outcomes. However, not considered by current MDS prognosis classification systems, gene variants have been identified for their contribution to the clinical heterogeneity of the disease and their impact on the prognosis. Notably, TP53 mutation is independently associated with a higher risk category, resistance to conventional therapies, rapid transformation to leukemia, and a poor outcome. Herein, we discuss the features of monoallelic and biallelic TP53 mutations within MDS, their corresponding carcinogenic mechanisms, their predictive value in current standard treatments including hypomethylating agents, allogeneic hematopoietic stem cell transplantation, and lenalidomide, together with the latest progress in TP53-targeted therapy strategies, especially MDS clinical trial data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA