Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 98(5): e0190323, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38593045

RESUMEN

We developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases, including transmembrane protease serine 2 (TMPRSS2), matriptase, and hepsin. TMPRSS2 is a membrane-associated protease that is highly expressed in the upper and lower respiratory tracts and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell entry, replication, and dissemination of new virus particles. We have previously shown that compound MM3122 exhibited subnanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Furthermore, we evaluated MM3122 in a mouse model of COVID-19 and demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in proinflammatory cytokine and chemokine production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2-infected mice. Therefore, MM3122 is a promising lead candidate small-molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses. IMPORTANCE: SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and a therapeutic drug for the treatment of COVID-19 given intraperitoneally in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research, but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.


Asunto(s)
Antivirales , Benzotiazoles , Tratamiento Farmacológico de COVID-19 , Oligopéptidos , SARS-CoV-2 , Inhibidores de Serina Proteinasa , Replicación Viral , Animales , Femenino , Humanos , Ratones , Antivirales/farmacología , Chlorocebus aethiops , COVID-19/virología , Modelos Animales de Enfermedad , Pulmón/virología , Pulmón/patología , Pulmón/efectos de los fármacos , Peptidomiméticos/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Serina Proteinasa/uso terapéutico , Células Vero , Replicación Viral/efectos de los fármacos , Oligopéptidos/farmacología , Benzotiazoles/farmacología
2.
Vet Clin Pathol ; 53(1): 111-115, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38164741

RESUMEN

A 26-year-old female sulfur-crested cockatoo (Cacatua galerita) was evaluated for vocalizing through the night and extending her right wing. Physical examination revealed a large, firm mass extending from the humerus to the distal aspect of the elbow. Computed tomography confirmed a large aggressive mass of the right distal humerus with a large soft tissue component, severe osteolysis, and adjacent periosteal proliferation. Fine-needle aspirates of the mass were most compatible with sarcoma, and osteosarcoma was prioritized. An unstained slide was treated with nitroblue tetrazolium chloride/5-bromo-4-chloro-3-indolyl phosphate toluidine salt-phosphatase (NBT/BCIP) substrate for ALP detection and was strongly positive, confirming a diagnosis of osteosarcoma. A month later, the patient underwent wing amputation and arrested during recovery from anesthesia. Post-mortem examination and histopathology were consistent with osteosarcoma. This case report highlights a rare occurrence of osteosarcoma in a cockatoo as well as its cytologic and histologic features. Additionally, this report provides support for NBT/BCIP application in ALP-expressing tumors, a cytochemical stain that has been minimally investigated in avian species.


Asunto(s)
Neoplasias Óseas , Cacatúas , Osteosarcoma , Sarcoma , Humanos , Femenino , Animales , Osteosarcoma/diagnóstico , Osteosarcoma/veterinaria , Sarcoma/veterinaria , Azufre , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/veterinaria
3.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405752

RESUMEN

We have developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases including transmembrane protease serine 2 (TMPRSS2), matriptase and hepsin. TMPRSS2 is a membrane associated protease which is highly expressed in the upper and lower respiratory tract and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell receptor binding, entry, replication, and dissemination of new virion particles. We have previously shown that compound MM3122 exhibited sub nanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell-viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Further, we have evaluated MM3122 in a mouse model of COVID-19 and have demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion, and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in pro-inflammatory cytokines and chemokines production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2 infected mice. Therefore, MM3122 is a promising lead candidate small molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses. IMPORTANCE: SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host-cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and therapeutic drug for the treatment of COVID-19 in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA