Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 110(24): 247203, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-25165957

RESUMEN

Using (63,65)Cu nuclear magnetic resonance in magnetic fields up to 30 T, we study the microscopic properties of the 12-site valence-bond-solid ground state in the "pinwheel" kagome compound Rb(2)Cu(3)SnF(12). We find that the ground state is characterized by a strong transverse staggered spin polarization whose temperature and field dependence points to a mixing of the singlet and triplet states. This is further corroborated by the field dependence of the gap Δ(H), which has a level anticrossing with a large minimum gap value of ≈ Δ(0)/2, with no evidence of a phase transition down to 1.5 K. By the exact diagonalization of small clusters, we show that the observed anticrossing is mainly due to staggered tilts of the g tensors defined by the crystal structure and reveal symmetry properties of the low-energy excitation spectrum compatible with the absence of level crossing.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(4 Pt 1): 041125, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17994954

RESUMEN

We consider a classical interacting dimer model which interpolates between the square lattice case and the triangular lattice case by tuning a chemical potential in the diagonal bonds. The interaction energy simply corresponds to the number of plaquettes with parallel dimers. Using transfer matrix calculations, we find in the anisotropic triangular case a succession of different physical phases as the interaction strength is increased: a short-range disordered liquid dimer phase at low interactions, then a critical phase similar to the one found for the square lattice, and finally a transition to an ordered columnar phase for large interactions. Our results indicate that criticality and nonbipartiteness are compatible in a dimer model. For the isotropic triangular case, we have indications that the system undergoes a first-order phase transition to an ordered phase, without appearance of an intermediate critical phase.

3.
Dalton Trans ; 45(10): 4352-9, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26733113

RESUMEN

Defect engineering has arisen as a promising approach to tune and optimise the adsorptive performance of metal-organic frameworks. However, the balance between enhanced adsorption and structural stability remains an open question. Here both CO2 adsorption capacity and mechanical stability are calculated for the zirconium-based UiO-66, which is subject to systematic variations of defect scenarios. Modulator-dependence, defect concentration and heterogeneity are explored in isolation. Mechanical stability is shown to be compromised at high pressures where uptake is enhanced with an increase in defect concentration. Nonetheless this reduction in stability is minimised for reo type defects and defects with trifluoroacetate substitution. Finally, heterogeneity and auxeticity may also play a role in overcoming the compromise between adsorption and stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA