Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 139(5): 983-98, 2009 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19945381

RESUMEN

oskar mRNA localization at the oocyte posterior pole is essential for correct patterning of the Drosophila embryo. Here we show at the ultrastructural level that endogenous oskar ribonucleoprotein complexes (RNPs) assemble sequentially with initial recruitment of Hrp48 and the exon junction complex (EJC) to oskar transcripts in the nurse cell nuclei, and subsequent recruitment of Staufen and microtubule motors, following transport to the cytoplasm. oskar particles are non-membrane-bound structures that coalesce as they move from the oocyte anterior to the posterior pole. Our analysis uncovers a role for the EJC component Barentsz in recruiting Tropomyosin II (TmII) to oskar particles in the ooplasm and reveals that TmII is required for kinesin binding to the RNPs. Finally, we show that both kinesin and dynein associate with oskar particles and are the primary microtubule motors responsible for transport of the RNPs within the oocyte.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Oocitos/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Dineínas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
3.
Genes Dev ; 23(2): 195-207, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19131435

RESUMEN

Local translation of asymmetrically enriched mRNAs is a powerful mechanism for functional polarization of the cell. In Drosophila, exclusive accumulation of Oskar protein at the posterior pole of the oocyte is essential for development of the future embryo. This is achieved by the formation of a dynamic oskar ribonucleoprotein (RNP) complex regulating the transport of oskar mRNA, its translational repression while unlocalized, and its translational activation upon arrival at the posterior pole. We identified the nucleo-cytoplasmic shuttling protein PTB (polypyrimidine tract-binding protein)/hnRNP I as a new factor associating with the oskar RNP in vivo. While PTB function is largely dispensable for oskar mRNA transport, it is necessary for translational repression of the localizing mRNA. Unexpectedly, a cytoplasmic form of PTB can associate with oskar mRNA and repress its translation, suggesting that nuclear recruitment of PTB to oskar complexes is not required for its regulatory function. Furthermore, PTB binds directly to multiple sites along the oskar 3' untranslated region and mediates assembly of high-order complexes containing multiple oskar RNA molecules in vivo. Thus, PTB is a key structural component of oskar RNP complexes that dually controls formation of high-order RNP particles and translational silencing.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Ribonucleoproteínas/metabolismo , Regiones no Traducidas 3'/metabolismo , Animales , Sitios de Unión , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Perfilación de la Expresión Génica , Mutación , Oogénesis/fisiología , Proteína de Unión al Tracto de Polipirimidina/genética , Unión Proteica , Biosíntesis de Proteínas/genética
4.
PLoS Biol ; 7(9): e1000194, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19753100

RESUMEN

The organization of intra-Golgi trafficking and the nature of the transport intermediates involved (e.g., vesicles, tubules, or tubular continuities) remain incompletely understood. It was recently shown that successive cisternae in the Golgi stack are interconnected by membrane tubules that form during the arrival of transport carriers from the endoplasmic reticulum. Here, we examine the mechanisms of generation and the function of these tubules. In principle, tubule formation might depend on several protein- and/or lipid-based mechanisms. Among the latter, we have studied the phospholipase A(2) (PLA(2))-mediated generation of wedge-shaped lysolipids, with the resulting local positive membrane curvature. We show that the arrival of cargo at the Golgi complex induces the recruitment of Group IVA Ca(2+)-dependent, cytosolic PLA(2) (cPLA(2)alpha) onto the Golgi complex itself, and that this cPLA(2)alpha is required for the formation of the traffic-dependent intercisternal tubules and for intra-Golgi transport. In contrast, silencing of cPLA(2)alpha has no inhibitory effects on peri-Golgi vesicles. These findings identify cPLA(2)alpha as the first component of the machinery that is responsible for the formation of intercisternal tubular continuities and support a role for these continuities in transport through the Golgi complex.


Asunto(s)
Aparato de Golgi/enzimología , Fosfolipasas A2 Grupo IV/metabolismo , Animales , Calcio/metabolismo , Perros , Aparato de Golgi/ultraestructura , Fosfolipasas A2 Grupo IV/genética , Células HeLa , Humanos , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Transporte de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/genética , Ratas , Vías Secretoras , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo
5.
Nat Cell Biol ; 6(11): 1071-81, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15502824

RESUMEN

The organization of secretory traffic remains unclear, mainly because of the complex structure and dynamics of the secretory pathway. We have thus studied a simplified system, a single synchronized traffic wave crossing an individual Golgi stack, using electron tomography. Endoplasmic-reticulum-to-Golgi carriers join the stack by fusing with cis cisternae and induce the formation of intercisternal tubules, through which they redistribute their contents throughout the stack. These tubules seem to be pervious to Golgi enzymes, whereas Golgi vesicles are depleted of both enzymes and cargo. Cargo then traverses the stack without leaving the cisternal lumen. When cargo exits the stack, intercisternal connections disappear. These findings provide a new view of secretory traffic that includes dynamic intercompartment continuities as key players.


Asunto(s)
Aparato de Golgi/ultraestructura , Transporte Biológico , Compartimento Celular , Línea Celular , Retículo Endoplásmico/ultraestructura , Microscopía Electrónica
6.
Mol Biol Cell ; 18(5): 1595-608, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17314401

RESUMEN

The Golgi complex in mammalian cells forms a continuous ribbon of interconnected stacks of flat cisternae. We show here that this distinctive architecture reflects and requires the continuous input of membranes from the endoplasmic reticulum (ER), in the form of pleiomorphic ER-to-Golgi carriers (EGCs). An important step in the biogenesis of the Golgi ribbon is the complete incorporation of the EGCs into the stacks. This requires the Golgi-matrix protein GM130, which continuously cycles between the cis-Golgi compartments and the EGCs. On acquiring GM130, the EGCs undergo homotypic tethering and fusion, maturing into larger and more homogeneous membrane units that appear primed for incorporation into the Golgi stacks. In the absence of GM130, this process is impaired and the EGCs remain as distinct entities. This induces the accumulation of tubulovesicular membranes, the shortening of the cisternae, and the breakdown of the Golgi ribbon. Under these conditions, however, secretory cargo can still be delivered to the Golgi complex, although this occurs less efficiently, and apparently through transient and/or limited continuities between the EGCs and the Golgi cisternae.


Asunto(s)
Autoantígenos/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Proteínas de la Membrana/metabolismo , Animales , Autoantígenos/genética , Secuencia de Bases , Transporte Biológico Activo , Células COS , Línea Celular , Chlorocebus aethiops , ADN/genética , Glicosilación , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Modelos Biológicos , Interferencia de ARN , ARN Interferente Pequeño/genética , Ratas
7.
Dev Cell ; 5(4): 583-94, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14536060

RESUMEN

Protein transport between the ER and the Golgi in mammalian cells occurs via large pleiomorphic carriers, and most current models suggest that these are formed by the fusion of small ER-derived COPII vesicles. We have examined the dynamics and structural features of these carriers during and after their formation from the ER by correlative video/light electron microscopy and tomography. We found that saccular carriers containing either the large supramolecular cargo procollagen or the small diffusible cargo protein VSVG arise through cargo concentration and direct en bloc protrusion of specialized ER domains in the vicinity of COPII-coated exit sites. This formation process is COPII dependent but does not involve budding and fusion of COPII-dependent vesicles. Fully protruded saccules then move centripetally, evolving into one of two types of carriers (with distinct kinetic and structural features). These findings provide an alternative framework for analysis of ER-to-Golgi traffic.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , 2,2'-Dipiridil/farmacología , Animales , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Vesículas Cubiertas por Proteínas de Revestimiento , Proteínas Portadoras/metabolismo , Línea Celular , Extensiones de la Superficie Celular , Quelantes/farmacología , Embrión de Pollo , Chlorocebus aethiops , Proteína Coatómero/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/ultraestructura , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/ultraestructura , Guanosina Difosfato/metabolismo , Humanos , Inmunohistoquímica , Glicoproteínas de Membrana/metabolismo , Microinyecciones , Microscopía Inmunoelectrónica , Modelos Biológicos , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosfoproteínas/metabolismo , Procolágeno/metabolismo , Transporte de Proteínas , Ratas , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Proteínas de Transporte Vesicular , Proteínas del Envoltorio Viral/metabolismo
8.
Mol Biol Cell ; 15(10): 4710-24, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15282336

RESUMEN

In the most widely accepted version of the cisternal maturation/progression model of intra-Golgi transport, the polarity of the Golgi complex is maintained by retrograde transport of Golgi enzymes in COPI-coated vesicles. By analyzing enzyme localization in relation to the three-dimensional ultrastructure of the Golgi complex, we now observe that Golgi enzymes are depleted in COPI-coated buds and 50- to 60-nm COPI-dependent vesicles in a variety of different cell types. Instead, we find that Golgi enzymes are concentrated in the perforated zones of cisternal rims both in vivo and in a cell-free system. This lateral segregation of Golgi enzymes is detectable in some stacks during steady-state transport, but it was significantly prominent after blocking endoplasmic reticulum-to-Golgi transport. Delivery of transport carriers to the Golgi after the release of a transport block leads to a diminution in Golgi enzyme concentrations in perforated zones of cisternae. The exclusion of Golgi enzymes from COPI vesicles and their transport-dependent accumulation in perforated zones argues against the current vesicle-mediated version of the cisternal maturation/progression model.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/enzimología , Aparato de Golgi/enzimología , Aparato de Golgi/ultraestructura , Animales , Transporte Biológico/fisiología , Sistema Libre de Células , Células Cultivadas , Fibroblastos/citología , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Microscopía Electrónica de Transmisión , Ratas
9.
Biochim Biophys Acta ; 1744(3): 340-50, 2005 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-15979506

RESUMEN

The morpho-functional principles of intra-Golgi transport are, surprisingly, still not clear, which is in marked contrast to our advanced knowledge of the underlying molecular machineries. Recently, the conceptual and technological hindrances that had delayed progress in this area have been disappearing, and a cluster of powerful morphological techniques has been revealing new glimpses of the organization of traffic in intact cells. Here, we discuss the new concepts around the present models of intra-Golgi transport.


Asunto(s)
Modelos Biológicos , Proteínas de Transporte Vesicular/metabolismo , Red trans-Golgi/metabolismo , Animales , Transporte Biológico , Humanos , Red trans-Golgi/ultraestructura
10.
J Cell Sci ; 120(Pt 7): 1288-98, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17356068

RESUMEN

Microsporidia are obligatory intracellular parasites, most species of which live in the host cell cytosol. They synthesize and then transport secretory proteins from the endoplasmic reticulum to the plasma membrane for formation of the spore wall and the polar tube for cell invasion. However, microsporidia do not have a typical Golgi complex. Here, using quick-freezing cryosubstitution and chemical fixation, we demonstrate that the Golgi analogs of the microsporidia Paranosema (Antonospora) grylli and Paranosema locustae appear as 300-nm networks of thin (25- to 40-nm diameter), branching or varicose tubules that display histochemical features of a Golgi, but that do not have vesicles. Vesicles are not formed even if membrane fusion is inhibited. These tubular networks are connected to the endoplasmic reticulum, the plasma membrane and the forming polar tube, and are positive for Sec13, gammaCOP and analogs of giantin and GM130. The spore-wall and polar-tube proteins are transported from the endoplasmic reticulum to the target membranes through these tubular networks, within which they undergo concentration and glycosylation. We suggest that the intracellular transport of secreted proteins in microsporidia occurs by a progression mechanism that does not involve the participation of vesicles generated by coat proteins I and II.


Asunto(s)
Aparato de Golgi/metabolismo , Estadios del Ciclo de Vida , Microsporidios/crecimiento & desarrollo , Microsporidios/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Cuerpo Adiposo/microbiología , Cuerpo Adiposo/ultraestructura , Aparato de Golgi/ultraestructura , Gryllidae/anatomía & histología , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Microsporidios/clasificación , Microsporidios/patogenicidad , Microsporidios/fisiología , Microsporidios/ultraestructura , Microsporidiosis/microbiología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA