RESUMEN
Group A Streptococcus (GAS), or Streptococcus pyogenes, is a human pathogen that causes diseases ranging from skin and soft tissue infections to severe invasive diseases, such as toxic shock syndrome. Each GAS strain carries a particular pilus type encoded in the variable fibronectin-binding, collagen-binding, T antigen (FCT) genomic region. Here, we describe the functional analysis of the serotype M2 pilus encoded in the FCT-6 region. We found that, in contrast to other investigated GAS pili, the ancillary pilin 1 lacks adhesive properties. Instead, the backbone pilin is important for host cell adhesion and binds several host factors, including fibronectin and fibrinogen. Using a panel of recombinant pilus proteins, GAS gene deletion mutants and Lactococcus lactis gain-of-function mutants we show that, unlike other GAS pili, the FCT-6 pilus also contributes to immune evasion. This was demonstrated by a delay in blood clotting, increased intracellular survival of the bacteria in macrophages, higher bacterial survival rates in human whole blood and greater virulence in a Galleria mellonella infection model in the presence of fully assembled FCT-6 pili.
Asunto(s)
Adhesión Bacteriana/fisiología , Proteínas Fimbrias/fisiología , Streptococcus pyogenes/fisiología , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Antígenos Virales de Tumores , Adhesión Bacteriana/genética , Adhesión Bacteriana/inmunología , Proteínas Bacterianas/metabolismo , Biopelículas , Fibronectinas/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/inmunología , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Humanos , Evasión Inmune , Mutación , Eliminación de Secuencia , Serogrupo , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/metabolismo , VirulenciaRESUMEN
Peptide vaccines are an attractive strategy to engineer the induction of highly targeted immune responses and avoid potentially allergenic and/or reactogenic protein regions. However, peptides by themselves are often unstable and poorly immunogenic, necessitating the need for an adjuvant and a specialised delivery system. We have developed a novel peptide delivery platform (PilVax) that allows the presentation of a stabilised and highly amplified peptide as part of the group A streptococcus serotype M1 pilus structure (PilM1) on the surface of the non-pathogenic bacterium Lactococcus lactis. To show proof of concept, we have successfully inserted the model peptide Ova324-339 into 3 different loop regions of the backbone protein Spy0128, which resulted in the assembly of the pilus containing large numbers of peptide on the surface of L. lactis. Intranasal immunisation of mice with L. lactis PilM1-Ova generated measurable Ova-specific systemic and mucosal responses (IgA and IgG). Furthermore, we show that multiple peptides can be inserted into the PilVax platform and that peptides can also be incorporated into structurally similar, but antigenically different pilus structures. PilVax may be useful as a cost-effective platform for the development of peptide vaccines against a variety of important human pathogens.