RESUMEN
Tissue-resident memory CD8+ T (TRM) cells are a subset of memory T cells that play a critical role in limiting early pathogen spread and controlling infection. TRM cells exhibit differences across tissues, but their potential heterogeneity among distinct anatomic compartments within the small intestine and colon has not been well recognized. Here, by analyzing TRM cells from the lamina propria and epithelial compartments of the small intestine and colon, we showed that intestinal TRM cells exhibited distinctive patterns of cytokine and granzyme expression along with substantial transcriptional, epigenetic, and functional heterogeneity. The T-box transcription factor Eomes, which represses TRM cell formation in some tissues, exhibited unexpected context-specific regulatory roles in supporting the maintenance of established TRM cells in the small intestine, but not in the colon. Taken together, these data provide previously unappreciated insights into the heterogeneity and differential requirements for the formation vs. maintenance of intestinal TRM cells.
Asunto(s)
Linfocitos T CD8-positivos , Células T de Memoria , Linfocitos T CD8-positivos/metabolismo , Memoria Inmunológica , Intestino Delgado , ColonRESUMEN
Memory CD8 T cells provide durable protection against diverse intracellular pathogens and can be broadly segregated into distinct circulating and tissue-resident populations. Paradigmatic studies have demonstrated that circulating memory cells can be further divided into effector memory (Tem) and central memory (Tcm) populations based on discrete functional characteristics. Following resolution of infection, we identified a persisting antigen-specific CD8 T cell population that was terminally fated with potent effector function but maintained memory T cell qualities and conferred robust protection against reinfection. Notably, this terminally differentiated effector memory CD8 T cell population (terminal-Tem) was conflated within the conventional Tem population, prompting redefinition of the classical characteristics of Tem cells. Murine terminal-Tem were transcriptionally, functionally, and developmentally unique compared to Tem cells. Through mass cytometry and single-cell RNA sequencing (RNA-seq) analyses of human peripheral blood from healthy individuals, we also identified an analogous terminal-Tem population of CD8 T cells that was transcriptionally distinct from Tem and Tcm Key findings from this study show that parsing of terminal-Tem from conventionally defined Tem challenge the reported characteristics of Tem biology, including enhanced presence in lymphoid tissues, robust IL-2 production, and recall potential, greater than expected homeostatic fitness, refined transcription factor dependencies, and a distinct molecular phenotype. Classification of terminal-Tem and clarification of Tem biology hold broad implications for understanding the molecular regulation of memory cell states and harnessing immunological memory to improve immunotherapies.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Memoria Inmunológica/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Linaje de la Célula/inmunología , Células Cultivadas , Humanos , RatonesRESUMEN
TNF superfamily member 15 (TL1A) is the ligand for TNFR superfamily (TNFRSF)25. We previously reported that TNFRSF25 stimulation with an agonist Ab, 4C12, expands pre-existing CD4(+)Foxp3(+) regulatory T cells (Tregs) in vivo. To determine how the physiological ligand differs from the Ab, we generated a soluble mouse TL1A-Ig fusion protein that forms a dimer of TL1A trimers in solution with an apparent molecular mass of 516 kDa. In vitro, TL1A-Ig mediated rapid proliferation of Foxp3(+) Tregs and a population of CD4(+)Foxp3(-) conventional T cells. TL1A-Ig also blocked de novo biogenesis of inducible Tregs and it attenuated the suppressive function of Tregs. TNFRSF25 stimulation by TL1A-Ig in vivo induced expansion of Tregs such that they increased to 30-35% of all CD4(+) T cells in the peripheral blood within 5 d of treatment. Treg proliferation in vivo was dependent on TCR engagement with MHC class II. Elevated Treg levels can be maintained for at least 20 d with daily injections of TL1A-Ig. TL1A-Ig-expanded Tregs expressed high levels of activation/memory markers KLRG1 and CD103 and were highly suppressive ex vivo. TL1A-Ig-mediated Treg expansion in vivo was protective against allergic lung inflammation, a mouse model for asthma, by reversing the ratio of conventional T cells to Tregs in the lung and blocking eosinophil exudation into the bronchoalveolar fluid. Thus, TL1A-Ig fusion proteins are highly active and tightly controllable agents to stimulate Treg proliferation in vivo, and they are uniquely able to maintain high levels of expanded Tregs by repeated administration.
Asunto(s)
Proteínas Recombinantes de Fusión/genética , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/aislamiento & purificación , Animales , Células CHO , Línea Celular Tumoral , Clonación Molecular , Cricetinae , Citometría de Flujo , Genes Reporteros , Cadenas Pesadas de Inmunoglobulina/biosíntesis , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/genética , Ratones , Ratones Endogámicos C57BL , Mutagénesis Insercional , Células 3T3 NIH , Plásmidos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/aislamiento & purificación , Hipersensibilidad Respiratoria/genética , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/metabolismo , Transfección , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/fisiologíaRESUMEN
Thymic-derived natural T regulatory cells (Tregs) are characterized by functional and phenotypic heterogeneity. Recently, a small fraction of peripheral Tregs has been shown to express Klrg1, but it remains unclear as to what extent Klrg1 defines a unique Treg subset. In this study, we show that Klrg1(+) Tregs represent a terminally differentiated Treg subset derived from Klrg1(-) Tregs. This subset is a recent Ag-responsive and highly activated short-lived Treg population that expresses enhanced levels of Treg suppressive molecules and that preferentially resides within mucosal tissues. The development of Klrg1(+) Tregs also requires extensive IL-2R signaling. This activity represents a distinct function for IL-2, independent from its contribution to Treg homeostasis and competitive fitness. These and other properties are analogous to terminally differentiated short-lived CD8(+) T effector cells. Our findings suggest that an important pathway driving Ag-activated conventional T lymphocytes also operates for Tregs.
Asunto(s)
Receptores Inmunológicos/inmunología , Receptores de Interleucina-2/inmunología , Transducción de Señal/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Traslado Adoptivo , Animales , Diferenciación Celular/inmunología , Citometría de Flujo , Perfilación de la Expresión Génica , Lectinas Tipo C , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis por Micromatrices , Receptores Inmunológicos/metabolismo , Receptores de Interleucina-2/metabolismo , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismoRESUMEN
OBJECTIVE: To assess for the presence of positive outcome bias in the otolaryngology clinical trial literature. Specifically, we investigate the prevalence of clinical trials with positive findings (CTP) and clinical trials with negative findings (CTN), as well as their quality of evidence and subsequent impact. STUDY DESIGN: Retrospective analysis. SETTING: Clinical Trials in the Influential Otolaryngology Literature. METHODS: We reviewed all clinical trials published in 4 major otolaryngology journals between 2000 and 2020. We constructed several multivariable regression models to investigate the relationship of finding direction with randomization status and citation count. Subsequently, we incorporated an interaction term between year and the primary covariate of each model to assess the temporal trajectory of these relationships. All models accounted for sample size, journal, subspecialty, and the affiliated program prestige. RESULTS: Of the 1367 trials analyzed, 1143 (84%) were CTPs, a rate that persisted throughout the study period (aOR 1.00, 95% CI 0.98-1.03). CTPs were significantly less likely to be randomized compared to CTNs (aOR 0.25, 0.17-0.37), a relationship that persisted over time (aOR 1.05, 0.99-1.03). CTPs received significantly more citations compared to CTNs (aIRR 1.41, 1.25-1.60), a disparity that also persisted over time (aIRR 0.99, 0.97-1.01). CONCLUSION: The otolaryngology clinical trial literature has been heavily dominated by positive findings. CTPs were more frequently cited and published even with a lower level of evidence compared to CTNs. This bias may influence the objectivity of evidence used to guide clinical practice and warrants attention when reviewing findings and changing practices.
Asunto(s)
Otolaringología , Humanos , Estudios Retrospectivos , Sesgo de Publicación , Publicaciones , SesgoRESUMEN
BACKGROUND: Ulcerative colitis (UC) and Crohn's disease are 2 types of inflammatory bowel disease (IBD), a group of chronic digestive disorders caused by aberrant immune responses to intestinal microbes. Although changes in the composition of immune cell subsets in the context of IBD have been previously described, the interactions and communication among cells are less well understood. Moreover, the precise mechanisms of action underlying many biologic therapies, including the anti-α4ß7 integrin antagonist vedolizumab, remain incompletely understood. Our study aimed to explore possible additional mechanisms through which vedolizumab acts. METHODS: We performed cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) on peripheral blood and colon immune cells derived from patients with ulcerative colitis treated with the anti-α4ß7 integrin antagonist vedolizumab. We applied a previously published computational approach, NicheNet, to predict immune cell-cell interactions, revealing putative ligand-receptor pairs and key transcriptional changes downstream of these cell-cell communications (CCC). RESULTS: We observed decreased proportions of T helper 17 (TH17) cells in UC patients who responded to vedolizumab and therefore focused the study on identifying cell-cell communications and signals of TH17 cells with other immune cells. For example, we observed that colon TH17 cells from vedolizumab nonresponders were predicted to have a greater degree of interactions with classical monocytes compared with responders, whereas colon TH17 cells from vedolizumab responders exhibited more interactions with myeloid dendritic cells compared with nonresponders. CONCLUSIONS: Overall, our results indicate that efforts to elucidate cell-cell communications among immune and nonimmune cell types may increase the mechanistic understanding of current and investigational therapies for IBD.
Compared to ulcerative patients unresponsive to vedolizumab, immune cell networks of ulcerative colitis patients responsive to vedolizumab have decreased proportion of TH17 and less pro-inflammatory signaling in the gut. Decreased pro-TH17 and interleukin (IL)-1 signaling from classical monocytes and innate immunocytes may mediate this phenotype.
Asunto(s)
Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Humanos , Colitis Ulcerosa/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Integrinas , Comunicación Celular , Fármacos Gastrointestinales/uso terapéutico , Fármacos Gastrointestinales/farmacologíaRESUMEN
INTRODUCTION: Crohn's disease (CD) is a major subtype of inflammatory bowel disease (IBD), a spectrum of chronic intestinal disorders caused by dysregulated immune responses to gut microbiota. Although transcriptional and functional changes in a number of immune cell types have been implicated in the pathogenesis of IBD, the cellular interactions and signals that drive these changes have been less well-studied. METHODS: We performed Cellular Indexing of Transcriptomes and Epitopes by sequencing on peripheral blood, colon, and ileal immune cells derived from healthy subjects and patients with CD. We applied a previously published computational approach, NicheNet, to predict immune cell types interacting with CD8 + T-cell subsets, revealing putative ligand-receptor pairs and key transcriptional changes downstream of these cell-cell communications. RESULTS: As a number of recent studies have revealed a potential role for CD8 + T-cell subsets in the pathogenesis of IBD, we focused our analyses on identifying the interactions of CD8 + T-cell subsets with other immune cells in the intestinal tissue microenvironment. We identified ligands and signaling pathways that have implicated in IBD, such as interleukin-1ß, supporting the validity of the approach, along with unexpected ligands, such as granzyme B, which may play previously unappreciated roles in IBD. DISCUSSION: Overall, these findings suggest that future efforts focused on elucidating cell-cell communications among immune and nonimmune cell types may further our understanding of IBD pathogenesis.
Asunto(s)
Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Ligandos , Enfermedades Inflamatorias del Intestino/metabolismo , Linfocitos T CD8-positivos/metabolismo , Comunicación CelularRESUMEN
During an immune response to microbial infection, CD8+ T cells give rise to short-lived effector cells and memory cells that provide sustained protection. Although the transcriptional programs regulating CD8+ T cell differentiation have been extensively characterized, the role of long noncoding RNAs (lncRNAs) in this process remains poorly understood. Using a functional genetic knockdown screen, we identified the lncRNA Malat1 as a regulator of terminal effector cells and the terminal effector memory (t-TEM) circulating memory subset. Evaluation of chromatin-enriched lncRNAs revealed that Malat1 grouped with trans lncRNAs that exhibit increased RNA interactions at gene promoters and gene bodies. Moreover, we observed that Malat1 was associated with increased H3K27me3 deposition at a number of memory cell-associated genes through a direct interaction with Ezh2, thereby promoting terminal effector and t-TEM cell differentiation. Our findings suggest an important functional role of Malat1 in regulating CD8+ T cell differentiation and broaden the knowledge base of lncRNAs in CD8+ T cell biology.
Asunto(s)
ARN Largo no Codificante , Linfocitos T CD8-positivos , Diferenciación Celular/genética , Represión Epigenética , Activación de Linfocitos , ARN Largo no Codificante/genéticaRESUMEN
BACKGROUND & AIMS: Hyperbaric oxygen therapy (HBOT) is a promising treatment for moderate-to-severe ulcerative colitis. However, our current understanding of the host and microbial response to HBOT remains unclear. This study examined the molecular mechanisms underpinning HBOT using a multi-omic strategy. METHODS: Pre- and post-intervention mucosal biopsies, tissue, and fecal samples were collected from HBOT phase 2 clinical trials. Biopsies and fecal samples were subjected to shotgun metaproteomics, metabolomics, 16s rRNA sequencing, and metagenomics. Tissue was subjected to bulk RNA sequencing and digital spatial profiling (DSP) for single-cell RNA and protein analysis, and immunohistochemistry was performed. Fecal samples were also used for colonization experiments in IL10-/- germ-free UC mouse models. RESULTS: Proteomics identified negative associations between HBOT response and neutrophil azurophilic granule abundance. DSP identified an HBOT-specific reduction of neutrophil STAT3, which was confirmed by immunohistochemistry. HBOT decreased microbial diversity with a proportional increase in Firmicutes and a secondary bile acid lithocholic acid. A major source of the reduction in diversity was the loss of mucus-adherent taxa, resulting in increased MUC2 levels post-HBOT. Targeted database searching revealed strain-level associations between Akkermansia muciniphila and HBOT response status. Colonization of IL10-/- with stool obtained from HBOT responders resulted in lower colitis activity compared with non-responders, with no differences in STAT3 expression, suggesting complementary but independent host and microbial responses. CONCLUSIONS: HBOT reduces host neutrophil STAT3 and azurophilic granule activity in UC patients and changes in microbial composition and metabolism in ways that improve colitis activity. Intestinal microbiota, especially strain level variations in A muciniphila, may contribute to HBOT non-response.
Asunto(s)
Colitis Ulcerosa , Oxigenoterapia Hiperbárica , Microbiota , Animales , Colitis Ulcerosa/terapia , Humanos , Interleucina-10 , Ratones , ARN Ribosómico 16S/genéticaRESUMEN
Case-based conference preparation is a valuable skill rarely covered in medical school training. We implemented an innovative program to teach fourth-year medical students to prepare and facilitate a virtual case presentation conference with faculty mentorship. Feedback survey results indicated improved confidence in case presentation and in establishing a broad differential.
RESUMEN
BACKGROUND: Many studies have investigated the role of the microbiome in inflammatory bowel disease (IBD), but few have focused on surgery specifically or its consequences on the metabolome that may differ by surgery type and require longitudinal sampling. Our objective was to characterize and contrast microbiome and metabolome changes after different surgeries for IBD, including ileocolonic resection and colectomy. METHODS: The UC San Diego IBD Biobank was used to prospectively collect 332 stool samples from 129 subjects (50 ulcerative colitis; 79 Crohn's disease). Of these, 21 with Crohn's disease had ileocolonic resections, and 17 had colectomies. We used shotgun metagenomics and untargeted liquid chromatography followed by tandem mass spectrometry metabolomics to characterize the microbiomes and metabolomes of these patients up to 24 months after the initial sampling. RESULTS: The species diversity and metabolite diversity both differed significantly among groups (species diversity: Mann-Whitney U test P valueâ =â 7.8e-17; metabolomics, P-valueâ =â 0.0043). Escherichia coli in particular expanded dramatically in relative abundance in subjects undergoing surgery. The species profile was better able to classify subjects according to surgery status than the metabolite profile (average precision 0.80 vs 0.68). CONCLUSIONS: Intestinal surgeries seem to reduce the diversity of the gut microbiome and metabolome in IBD patients, and these changes may persist. Surgery also further destabilizes the microbiome (but not the metabolome) over time, even relative to the previously established instability in the microbiome of IBD patients. These long-term effects and their consequences for health outcomes need to be studied in prospective longitudinal trials linked to microbiome-involved phenotypes.
Asunto(s)
Enfermedad de Crohn , Procedimientos Quirúrgicos del Sistema Digestivo , Microbioma Gastrointestinal , Enfermedad de Crohn/cirugía , Heces , Humanos , Metaboloma , Estudios ProspectivosRESUMEN
The Notch signaling pathway plays a key role in proliferation and differentiation. We investigated the effect of Jagged 1 (Jag1)-mediated Notch signaling activation in the human limbal stem/progenitor cell (LSC) population and the stratification of the limbal epithelium in vitro. After Notch signaling activation, there was a reduction in the amount of the stem/progenitor cell population, epithelial stratification, and expression of proliferation markers. There was also an increase of the corneal epithelial differentiation. In the presence of Jag1, asymmetric divisions were decreased, and the expression pattern of the polarity protein Par3, normally present at the apical-lateral membrane of basal cells, was dispersed in the cells. We propose a mechanism in which Notch activation by Jag1 decreases p63 expression at the basal layer, which in turn reduces stratification by decreasing the number of asymmetric divisions and increases differentiation.
Asunto(s)
Epitelio/metabolismo , Proteína Jagged-1/metabolismo , Limbo de la Córnea/metabolismo , Receptores Notch/metabolismo , Diferenciación Celular , Humanos , Transducción de SeñalRESUMEN
During an immune response to microbial infection, CD8+ T cells give rise to distinct classes of cellular progeny that coordinately mediate clearance of the pathogen and provide long-lasting protection against reinfection, including a subset of noncirculating tissue-resident memory (TRM) cells that mediate potent protection within nonlymphoid tissues. Here, we used single-cell RNA sequencing to examine the gene expression patterns of individual CD8+ T cells in the spleen and small intestine intraepithelial lymphocyte (siIEL) compartment throughout the course of their differentiation in response to viral infection. These analyses revealed previously unknown transcriptional heterogeneity within the siIEL CD8+ T cell population at several stages of differentiation, representing functionally distinct TRM cell subsets and a subset of TRM cell precursors within the tissue early in infection. Together, these findings may inform strategies to optimize CD8+ T cell responses to protect against microbial infection and cancer.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Animales , Linfocitos T CD8-positivos/citología , Diferenciación Celular/inmunología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones TransgénicosRESUMEN
Inflammatory bowel disease (IBD) encompasses a spectrum of gastrointestinal disorders driven by dysregulated immune responses against gut microbiota. We integrated single-cell RNA and antigen receptor sequencing to elucidate key components, cellular states, and clonal relationships of the peripheral and gastrointestinal mucosal immune systems in health and ulcerative colitis (UC). UC was associated with an increase in IgG1+ plasma cells in colonic tissue, increased colonic regulatory T cells characterized by elevated expression of the transcription factor ZEB2, and an enrichment of a γδ T cell subset in the peripheral blood. Moreover, we observed heterogeneity in CD8+ tissue-resident memory T (TRM) cells in colonic tissue, with four transcriptionally distinct states of differentiation observed across health and disease. In the setting of UC, there was a marked shift of clonally related CD8+ TRM cells toward an inflammatory state, mediated, in part, by increased expression of the T-box transcription factor Eomesodermin. Together, these results provide a detailed atlas of transcriptional changes occurring in adaptive immune cells in the context of UC and suggest a role for CD8+ TRM cells in IBD.
Asunto(s)
Colitis Ulcerosa/inmunología , Linfocitos Intraepiteliales/inmunología , Células T de Memoria/inmunología , Linfocitos T Reguladores/inmunología , Inmunidad Adaptativa , Animales , Colon/inmunología , Humanos , Inmunoglobulina G/inmunología , Masculino , Ratones Transgénicos , Análisis de la Célula IndividualRESUMEN
BACKGROUND: Mutations in methylmalonyl-CoA mutase cause methylmalonic acidemia, a common organic aciduria. Current treatment regimens rely on dietary management and, in severely affected patients, liver or combined liver-kidney transplantation. For undetermined reasons, transplantation does not correct the biochemical phenotype. METHODS: To study the metabolic disturbances seen in this disorder, we have created a murine model with a null allele at the methylmalonyl-CoA mutase locus and correlated the results observed in the knock-out mice to patient data. To gain insight into the origin and magnitude of methylmalonic acid (MMA) production in humans with methylmalonyl-CoA mutase deficiency, we evaluated two methylmalonic acidemia patients who had received different variants of combined liver-kidney transplants, one with a complete liver replacement-kidney transplant and the other with an auxiliary liver graft-kidney transplant, and compared their metabolite production to four untransplanted patients with intact renal function. RESULTS: Enzymatic, Western and Northern analyses demonstrated that the targeted allele was null and correctable by lentiviral complementation. Metabolite studies defined the magnitude and tempo of plasma MMA concentrations in the mice. Before a fatal metabolic crisis developed in the first 24-48 hours, the methylmalonic acid content per gram wet-weight was massively elevated in the skeletal muscle as well as the kidneys, liver and brain. Near the end of life, extreme elevations in tissue MMA were present primarily in the liver. The transplant patients studied when well and on dietary therapy, displayed massive elevations of MMA in the plasma and urine, comparable to the levels seen in the untransplanted patients with similar enzymatic phenotypes and dietary regimens. CONCLUSION: The combined observations from the murine metabolite studies and patient investigations indicate that during homeostasis, a large portion of circulating MMA has an extra-heptorenal origin and likely derives from the skeletal muscle. Our studies suggest that modulating skeletal muscle metabolism may represent a strategy to increase metabolic capacity in methylmalonic acidemia as well as other organic acidurias. This mouse model will be useful for further investigations exploring disease mechanisms and therapeutic interventions in methylmalonic acidemia, a devastating disorder of intermediary metabolism.
Asunto(s)
Enfermedades Renales/sangre , Ácido Metilmalónico/sangre , Metilmalonil-CoA Mutasa/deficiencia , Músculo Esquelético/fisiología , Adulto , Animales , Animales Recién Nacidos , Northern Blotting , Western Blotting , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Tasa de Filtración Glomerular , Humanos , Enfermedades Renales/etiología , Enfermedades Renales/terapia , Trasplante de Riñón , Trasplante de Hígado , Masculino , Metilmalonil-CoA Mutasa/genética , Ratones , Ratones Noqueados , Mutación/genética , FenotipoRESUMEN
BACKGROUND: Methylmalonic acidemia (MMA), a common organic aciduria, is caused by deficiency of the mitochondrial localized, 5'deoxyadenosylcobalamin dependent enzyme, methylmalonyl-CoA mutase (MUT). Liver transplantation in the absence of gross hepatic dysfunction provides supportive therapy and metabolic stability in severely affected patients, which invites the concept of using cell and gene delivery as future treatments for this condition. METHODS: To assess the effectiveness of gene delivery to restore the defective metabolism in this disorder, adenoviral correction experiments were performed using murine Mut embryonic fibroblasts and primary human methylmalonyl-CoA mutase deficient hepatocytes derived from a patient who harbored two early truncating mutations, E224X and R228X, in the MUT gene. Enzymatic and expression studies were used to assess the extent of functional correction. RESULTS: Primary hepatocytes, isolated from the native liver after removal subsequent to a combined liver-kidney transplantation procedure, or Mut murine fibroblasts were infected with a second generation recombinant adenoviral vector that expressed the murine methylmalonyl-CoA mutase as well as eGFP from distinct promoters. After transduction, [1-14C] propionate macromolecular incorporation studies and Western analysis demonstrated complete correction of the enzymatic defect in both cell types. Viral reconstitution of enzymatic expression in the human methylmalonyl-CoA mutase deficient hepatocytes exceeded that seen in fibroblasts or control hepatocytes. CONCLUSION: These experiments provide proof of principle for viral correction in methylmalonic acidemia and suggest that hepatocyte-directed gene delivery will be an effective therapeutic treatment strategy in both murine models and in human patients. Primary hepatocytes from a liver that was unsuitable for transplantation provided an important resource for these studies.
Asunto(s)
Técnicas de Transferencia de Gen , Metilmalonil-CoA Mutasa/genética , Adenoviridae , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Animales , Western Blotting , Línea Celular , Preescolar , Fibroblastos/enzimología , Terapia Genética , Vectores Genéticos , Hepatocitos/enzimología , Humanos , Masculino , Ácido Metilmalónico/orina , Metilmalonil-CoA Mutasa/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
TNF receptor superfamily member 25 (TNFRSF25; also known as DR3, and referred to herein as TNFR25) is constitutively and highly expressed by CD4(+)FoxP3(+) Tregs. However, its function on these cells has not been determined. Here we used a TNFR25-specific agonistic monoclonal antibody, 4C12, to study the effects of TNFR25 signaling on Tregs in vivo in mice. Signaling through TNFR25 induced rapid and selective expansion of preexisting Tregs in vivo such that they became 30%-35% of all CD4(+) T cells in the peripheral blood within 4 days. TNFR25-induced Treg proliferation was dependent upon TCR engagement with MHC class II, IL-2 receptor, and Akt signaling, but not upon costimulation by CD80 or CD86; it was unaffected by rapamycin. TNFR25-expanded Tregs remained highly suppressive ex vivo, and Tregs expanded by TNFR25 in vivo were protective against allergic lung inflammation, a mouse model for asthma, by reversing the ratio of effector T cells to Tregs in the lung, suppressing IL-13 and Th2 cytokine production, and blocking eosinophil exudation into bronchoalveolar fluid. Our studies define what we believe to be a novel mechanism for Treg control and important functions for TNFR25 in regulating autoaggression that balance its known role in enhancing autoimmunity.
Asunto(s)
Asma/prevención & control , Miembro 25 de Receptores de Factores de Necrosis Tumoral/fisiología , Linfocitos T Reguladores/inmunología , Animales , Asma/inmunología , Modelos Animales de Enfermedad , Antígenos de Histocompatibilidad Clase II/fisiología , Interleucina-2/fisiología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/inmunología , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Miembro 25 de Receptores de Factores de Necrosis Tumoral/agonistasRESUMEN
We have utilized Caenorhabditis elegans to study human methylmalonic acidemia. Using bioinformatics, a full complement of mammalian homologues for the conversion of propionyl-CoA to succinyl-CoA in the genome of C. elegans, including propionyl-CoA carboxylase subunits A and B (pcca-1, pccb-1), methylmalonic acidemia cobalamin A complementation group (mmaa-1), co(I)balamin adenosyltransferase (mmab-1), MMACHC (cblc-1), methylmalonyl-CoA epimerase (mce-1) and methylmalonyl-CoA mutase (mmcm-1) were identified. To verify predictions that the entire intracellular adenosylcobalamin metabolic pathway existed and was functional, the kinetic properties of the C. elegans mmcm-1 were examined. RNA interference against mmcm-1, mmab-1, mmaa-1 in the presence of propionic acid revealed a chemical phenotype of increased methylmalonic acid; deletion mutants of mmcm-1, mmab-1 and mce-1 displayed reduced 1-[(14)C]-propionate incorporation into macromolecules. The mutants produced increased amounts of methylmalonic acid in the culture medium, proving that a functional block in the pathway caused metabolite accumulation. Lentiviral delivery of the C. elegans mmcm-1 into fibroblasts derived from a patient with mut(o) class methylmalonic acidemia could partially restore propionate flux. The C. elegans mce-1 deletion mutant demonstrates for the first time that a lesion at the epimerase step of methylmalonyl-CoA metabolism can functionally impair flux through the methylmalonyl-CoA mutase pathway and suggests that malfunction of MCEE may cause methylmalonic acidemia in humans. The C. elegans system we describe represents the first lower metazoan model organism of mammalian propionate spectrum disorders and demonstrates that mass spectrometry can be employed to study a small molecule chemical phenotype in C. elegans RNAi and deletion mutants.