RESUMEN
Photon management plays a vital role in the power conversion efficiency of III-V semiconductor solar cells. However, the photon recycling characteristics of GaAs-based multi-quantum-well (MQW) solar cells employed different optical designs had yet been fully explored. In this work, we investigate the impact of the spectrally selective filter (SSF) and distributed Bragg reflector (DBR) on the photovoltaic characteristics of single-junction, strain-balanced In0.1Ga0.9As/ GaAs0.85P0.15 MQW solar cells. Specifically, the SSFs with cutoff wavelengths of 880, 910, and 940â nm are designed and implemented on MQW solar cells with and without the incorporation of a rear DBR. Photon confinement in the vertical direction is verified based on the characterizations of reflectance, electroluminescence, and external quantum efficiency. We show that the photon confinement reduces the saturation current density, up to 26 times and 3 times for the 880â nm SSF-MQW and SSF-MQW-DBR devices, respectively, compared to that of the 940â nm devices. Furthermore, by comparing the SSF-MQW-DBR solar cells under simulated one-sun and concentrated illumination conditions, the open-circuit voltage exhibits a maximal net increase for the 910â nm SSF due to tradeoff between the short-circuit and saturation current density. The proposed SSF design may offer a viable approach to boost the performance of GaAs-based MQW solar cells.
RESUMEN
Nano-patterned glass superstrates obtained via a large-area production approach are desirable for antireflection and light trapping in thin-film solar cells. The tapered nanostructures allow a graded refractive index profile between the glass and material interfaces, leading to suppressed surface reflection and increased forward diffraction of light. In this work, we investigate nanostructured glass patterns with different aspect ratios using scalable nanosphere lithography for hydrogenated amorphous silicon (a-Si:H) thin film solar cells. Compared to flat glass cell and Asahi U-type glass cell, enhancements in short-circuit current density (J(sc)) of 51.6% and 8%, respectively, were achieved for a moderate aspect ratio of 0.16. The measured external quantum efficiencies (EQE) spectra confirmed a broadband enhancement due to antireflection and light trapping properties.
RESUMEN
In this paper, we examine photoluminescence spectra of Cu(In,Ga)Se(2) (CIGS) via temperature-dependent and power-dependent photoluminescence (PL). Donor-acceptor pair (DAP) transition, near-band-edge transition were identified by their activation energies. S-shaped displacement of peak position was observed and was attributed to carrier confinement caused by potential fluctuation. This coincides well with the obtained activation energy at low temperature. We also present a model for transition from V(Se) to V(In) and to V(Cu) which illustrates competing mechanisms between DAPs recombinations.
RESUMEN
In this paper, we examine photoluminescence spectra of Cu(In,Ga)Se(2) (CIGS) via temperature-dependent and power-dependent photoluminescence (PL). Donor-acceptor pair (DAP) transition, near-band-edge transition were identified by their activation energies. S-shaped displacement of peak position was observed and was attributed to carrier confinement caused by potential fluctuation. This coincides well with the obtained activation energy at low temperature. We also present a model for transition from V(Se) to V(In) and to V(Cu) which illustrates competing mechanisms between DAPs recombinations.
RESUMEN
Enhanced photoelectric conversion is demonstrated in a crystalline silicon (c-Si) solar cell with frustum nanorod arrays (FNAs), fabricated using colloidal lithography and reactive-ion etching techniques. Under a simulated one-sun condition, the cell with FNAs improves the power conversion efficiency by nearly 30%, compared to a conventional wet-chemical-textured reference. The enhancement mostly arises from the superior antireflective properties for wavelengths between 400 nm and 1000 nm. In that spectral range, we show that photons gained by reflection reduction directly contribute to collected carriers without auxiliary losses due to nano-fabrication. Moreover, the omnidirectional antireflection of FNAs is also investigated using an angle-resolved reflectance spectroscopy. The dimensions of FNAs are further analyzed with numerical calculations based on Maxwell's equations. The optimized short-circuit current density achieves nearly 40 mA/cm2, corresponding to a 16% enhancement compared to the conventional device.
RESUMEN
Light-management is critical to thin film solar cells due to their usually limited optical absorption in the active layer. Conventional approaches involve employing separate techniques for anti-reflection and light trapping. Here, we demonstrate an embedded biomimetic nanostructure (EBN) that achieves both effects for hydrogenated amorphous silicon (a-Si:H) solar cells. The fabrication of EBNs is accomplished by patterning an index-matching silicon-nitride layer deposited on a glass substrate using polystyrene nanospheres lithography, followed by reactive ion etching. The profile of EBN is then reproduced layer by layer during the deposition of a-Si:H cells. We show that a solar cell with an optimized EBN exhibits a broadband enhanced external quantum efficiency due to both anti-reflection and light-trapping, with respect to an industrial standard cell using an Asahi U glass substrate which is mostly optimized for light trapping. Overall, the cell with an optimized EBN achieves a large short-circuit current density of 17.74 mA/cm(2), corresponding to a 37.63% enhancement over a flat control cell. The power conversion efficiency is also increased from 5.36% to 8.32%. Moreover, the light management enabled by the EBN remains efficient over a wide range of incident angles up to 60°, which is particularly desirable for real environments with diffused sun light. The novel patterning method is not restricted to a-Si:H solar cells, but is also widely applicable to other thin film materials.
Asunto(s)
Materiales Biomiméticos/química , Suministros de Energía Eléctrica , Nanoestructuras/química , Fenómenos Ópticos , Energía Solar , Absorción , Nanoestructuras/ultraestructura , Teoría Cuántica , Análisis EspectralRESUMEN
The enhanced efficiency of the crystalline silicon (c-Si) solar cell with nanopillar arrays (NPAs) was demonstrated by deployment of CdS quantum dots (QDs). The NPAs was fabricated by the colloidal lithography and reactive-ion etching techniques. Under a simulated one-sun condition, the device with CdS QDs shows a 33% improvement of power conversion efficiency, compared with the one without QDs. For further investigation, the excitation spectrum of photoluminescence (PL), absorbance spectrum, current-voltage (I-V) characteristics, reflectance and external quantum efficiency of the device was measured and analyzed. It is noteworthy that the enhancement of efficiency could be attributed to the photon down-conversion, the antireflection, and the improved electrical property.
RESUMEN
The enhanced conversion efficiency of the InGaP/GaAs dual-junction solar cell was demonstrated utilizing broad-band and omnidirectional antireflection nanorod arrays. The nanorod arrays were fabricated by self-assembled Ni clusters, followed by inductively-coupled-plasma reactive ion etching. The conversion efficiency measured under one-sun air mass 1.5 global illuminations at room temperature was improved by 10.8%. The light absorption efficiencies of the top InGaP and bottom GaAs cells were also studied under the influence of nanorod arrays. The enhanced absorption efficiency was mostly contributed from the short wavelength absorption by top cell. Surface nanorod arrays served not only as broad-band omnidirectional antireflection layers but also scattering sources. The structure can be further optimized to obtain the maximum conversion efficiency.