Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 152(1-2): 236-47, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23332758

RESUMEN

The sigma-1 receptor (Sig-1R), an endoplasmic reticulum (ER) chaperone protein, is an interorganelle signaling modulator that potentially plays a role in drug-seeking behaviors. However, the brain site of action and underlying cellular mechanisms remain unidentified. We found that cocaine exposure triggers a Sig-1R-dependent upregulation of D-type K(+) current in the nucleus accumbens (NAc) that results in neuronal hypoactivity and thereby enhances behavioral cocaine response. Combining ex vivo and in vitro studies, we demonstrated that this neuroadaptation is caused by a persistent protein-protein association between Sig-1Rs and Kv1.2 channels, a phenomenon that is associated to a redistribution of both proteins from intracellular compartments to the plasma membrane. In conclusion, the dynamic Sig-1R-Kv1.2 complex represents a mechanism that shapes neuronal and behavioral response to cocaine. Functional consequences of Sig-1R binding to K(+) channels may have implications for other chronic diseases where maladaptive intrinsic plasticity and Sig-1Rs are engaged.


Asunto(s)
Cocaína/administración & dosificación , Canal de Potasio Kv.1.2/metabolismo , Plasticidad Neuronal , Núcleo Accumbens/metabolismo , Receptores sigma/metabolismo , Animales , Comportamiento de Búsqueda de Drogas , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores sigma/genética , Receptor Sigma-1
2.
Mol Psychiatry ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879719

RESUMEN

Substance use disorders (SUD) and drug addiction are major threats to public health, impacting not only the millions of individuals struggling with SUD, but also surrounding families and communities. One of the seminal challenges in treating and studying addiction in human populations is the high prevalence of co-morbid conditions, including an increased risk of contracting a human immunodeficiency virus (HIV) infection. Of the ~15 million people who inject drugs globally, 17% are persons with HIV. Conversely, HIV is a risk factor for SUD because chronic pain syndromes, often encountered in persons with HIV, can lead to an increased use of opioid pain medications that in turn can increase the risk for opioid addiction. We hypothesize that SUD and HIV exert shared effects on brain cell types, including adaptations related to neuroplasticity, neurodegeneration, and neuroinflammation. Basic research is needed to refine our understanding of these affected cell types and adaptations. Studying the effects of SUD in the context of HIV at the single-cell level represents a compelling strategy to understand the reciprocal interactions among both conditions, made feasible by the availability of large, extensively-phenotyped human brain tissue collections that have been amassed by the Neuro-HIV research community. In addition, sophisticated animal models that have been developed for both conditions provide a means to precisely evaluate specific exposures and stages of disease. We propose that single-cell genomics is a uniquely powerful technology to characterize the effects of SUD and HIV in the brain, integrating data from human cohorts and animal models. We have formed the Single-Cell Opioid Responses in the Context of HIV (SCORCH) consortium to carry out this strategy.

3.
J Immunol ; 207(11): 2625-2630, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34810268

RESUMEN

Metabolism and inflammation have been viewed as two separate processes with distinct but critical functions for our survival: metabolism regulates the utilization of nutrients, and inflammation is responsible for defense and repair. Both respond to an organism's stressors to restore homeostasis. The interplay between metabolic status and immune response (immunometabolism) plays an important role in maintaining health or promoting disease development. Understanding these interactions is critical in developing tools for facilitating novel preventative and therapeutic approaches for diseases, including cancer. This trans-National Institutes of Health workshop brought together basic scientists, technology developers, and clinicians to discuss state-of-the-art, innovative approaches, challenges, and opportunities to understand and harness immunometabolism in modulating inflammation and its resolution.


Asunto(s)
Inflamación/metabolismo , Neoplasias/metabolismo , Humanos , Inflamación/inmunología , Neoplasias/inmunología
4.
FASEB J ; 33(12): 13085-13097, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31577913

RESUMEN

Inflammation is a normal process in our body; acute inflammation acts to suppress infections and support wound healing. Chronic inflammation likely leads to a wide range of diseases, including cancer. Tools to locate and monitor inflammation are critical for developing effective interventions to arrest inflammation and promote its resolution. To identify current clinical needs, challenges, and opportunities in advancing imaging-based evaluations of inflammatory status in patients, the U.S. National Institutes of Health convened a workshop on imaging inflammation and its resolution in health and disease. Clinical speakers described their needs for image-based capabilities that could help determine the extent of inflammatory conditions in patients to guide treatment planning and undertake necessary interventions. The imaging speakers showcased the state-of-the-art in vivo imaging techniques for detecting inflammation in different disease areas. Many imaging capabilities developed for 1 organ or disease can be adapted for other diseases and organs, whereas some have promise for clinical utility within the next 5-10 yr. Several speakers demonstrated that multimodal imaging measurements integrated with serum-based measures could improve in robustness for clinical utility. All speakers agreed that multiple inflammatory measures should be acquired longitudinally to comprehend the dynamics of unresolved inflammation that leads to disease development. They also agreed that the best strategies for accelerating clinical translation of imaging inflammation capabilities are through integration between new imaging techniques and biofluid-based biomarkers of inflammation as well as already established imaging measurements.-Liu, C. H., Abrams, N. D., Carrick, D. M., Chander, P., Dwyer, J., Hamlet, M. R. J., Kindzelski, A. L., PrabhuDas, M., Tsai, S.-Y. A., Vedamony, M. M., Wang, C., Tandon, P. Imaging inflammation and its resolution in health and disease: current status, clinical needs, challenges, and opportunities.


Asunto(s)
Inflamación/metabolismo , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Biomarcadores/metabolismo , Humanos , Inmunoterapia , Inflamación/diagnóstico por imagen , Inflamación/inmunología , Imagen por Resonancia Magnética , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Tomografía de Emisión de Positrones
5.
Proc Natl Acad Sci U S A ; 112(21): 6742-7, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25964330

RESUMEN

Dysregulation of cyclin-dependent kinase 5 (cdk5) per relative concentrations of its activators p35 and p25 is implicated in neurodegenerative diseases. P35 has a short t½ and undergoes rapid proteasomal degradation in its membrane-bound myristoylated form. P35 is converted by calpain to p25, which, along with an extended t½, promotes aberrant activation of cdk5 and causes abnormal hyperphosphorylation of tau, thus leading to the formation of neurofibrillary tangles. The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum chaperone that is implicated in neuronal survival. However, the specific role of the Sig-1R in neurodegeneration is unclear. Here we found that Sig-1Rs regulate proper tau phosphorylation and axon extension by promoting p35 turnover through the receptor's interaction with myristic acid. In Sig-1R-KO neurons, a greater accumulation of p35 is seen, which results from neither elevated transcription of p35 nor disrupted calpain activity, but rather to the slower degradation of p35. In contrast, Sig-1R overexpression causes a decrease of p35. Sig-1R-KO neurons exhibit shorter axons with lower densities. Myristic acid is found here to bind Sig-1R as an agonist that causes the dissociation of Sig-1R from its cognate partner binding immunoglobulin protein. Remarkably, treatment of Sig-1R-KO neurons with exogenous myristic acid mitigates p35 accumulation, diminishes tau phosphorylation, and restores axon elongation. Our results define the involvement of Sig-1Rs in neurodegeneration and provide a mechanistic explanation that Sig-1Rs help maintain proper tau phosphorylation by potentially carrying and providing myristic acid to p35 for enhanced p35 degradation to circumvent the formation of overreactive cdk5/p25.


Asunto(s)
Axones/metabolismo , Fosfotransferasas/metabolismo , Receptores sigma/metabolismo , Proteínas tau/metabolismo , Animales , Axones/ultraestructura , Calpaína/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Hipocampo/metabolismo , Hipocampo/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Ácido Mirístico/metabolismo , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neurogénesis/fisiología , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Receptores sigma/deficiencia , Receptores sigma/genética , Receptor Sigma-1
6.
Proc Natl Acad Sci U S A ; 112(47): E6562-70, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26554014

RESUMEN

The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER-mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal.


Asunto(s)
Ensamble y Desensamble de Cromatina/efectos de los fármacos , Cocaína/farmacología , Membrana Nuclear/metabolismo , Receptores sigma/metabolismo , Transcripción Genética/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Técnicas de Silenciamiento del Gen , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Monoaminooxidasa/genética , Membrana Nuclear/efectos de los fármacos , Proteínas Nucleares/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ratas , Factor de Transcripción Sp3 , Síndrome de Abstinencia a Sustancias , Receptor Sigma-1
7.
Biochem Biophys Res Commun ; 482(2): 282-288, 2017 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-27847319

RESUMEN

Skeletal muscle insulin resistance is considered to be the primary defect involved in type 2 diabetes mellitus (T2DM). Despite transcriptome studies in limited T2DM human subjects suggesting an association of T2DM with impaired oxidative phosphorylation in muscle, its molecular pathogenesis remains largely unknown. To identify dysregulated genes and gene networks that are associated with T2DM in human skeletal muscle, we examined expression patterns of 56,318 transcribed genes on 92 T2DM cases and 184 gender-, age- and race-matched non-diabetic controls from the Genotype-Tissue Expression (GTEx) database. RNA-Sequencing data suggest that diabetic skeletal muscle is characterized by decreased expression of genes that are related to insulin resistance (IRS2, MTOR, SLC2A4, and PPARA), carbohydrate, energy, and amino acid metabolism pathways (NDUFS1, NDUFA10, NDUFB4, NDUFB5, NDUFA5, NDUFB10, SDHB, SDHC, ATP5H, ATP5A, and ATP5J). Up-regulated genes in T2DM are mainly enriched in apoptosis pathways (TP53, GADD45A, TNFRSF10B, TP53AIP1, and PMAIP1), and notably include immune-related pathways suggestive of a response to various infectious diseases (C2, CFB, C4A, C4B, C1S, C1R, C3, HLA-DRA, HLA-DMA, HLA-DOA, and HLA-DPB1). These results confirm the essential regulation of impaired insulin signaling and oxidative phosphorylation in the muscle of T2DM patients, and provide novel molecular insights into the pathophysiological mechanisms of T2DM.


Asunto(s)
Apoptosis/inmunología , Diabetes Mellitus Tipo 2/inmunología , Resistencia a la Insulina/inmunología , Proteínas Musculares/inmunología , Músculo Esquelético/inmunología , Transcriptoma/inmunología , Humanos , Infecciones/inmunología , Transducción de Señal/inmunología
8.
J Biomed Sci ; 24(1): 74, 2017 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-28917260

RESUMEN

The sigma-1 receptor (Sig-1R) is a chaperone that resides mainly at the mitochondrion-associated endoplasmic reticulum (ER) membrane (called the MAMs) and acts as a dynamic pluripotent modulator in living systems. At the MAM, the Sig-1R is known to play a role in regulating the Ca2+ signaling between ER and mitochondria and in maintaining the structural integrity of the MAM. The MAM serves as bridges between ER and mitochondria regulating multiple functions such as Ca2+ transfer, energy exchange, lipid synthesis and transports, and protein folding that are pivotal to cell survival and defense. Recently, emerging evidences indicate that the MAM is critical in maintaining neuronal homeostasis. Thus, given the specific localization of the Sig-1R at the MAM, we highlight and propose that the direct or indirect regulations of the Sig-1R on mitochondrial functions may relate to neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). In addition, the promising use of Sig-1R ligands to rescue mitochondrial dysfunction-induced neurodegeneration is addressed.


Asunto(s)
Mitocondrias/fisiología , Chaperonas Moleculares/genética , Enfermedades Neurodegenerativas/genética , Receptores sigma/genética , Humanos , Ligandos , Chaperonas Moleculares/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Receptores sigma/metabolismo , Receptor Sigma-1
9.
Adv Exp Med Biol ; 964: 79-83, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28315266

RESUMEN

The endoplasmic reticular (ER) protein sigma-1 receptor (Sig-1R) has been implicated in CNS disorders including but not limited to neurodegenerative diseases, depression , amnesia, and substance abuse. Sig-1Rs are particularly enriched in the specific domain where ER membranes make contacts with the mitochondria (MAM). Within that specific domain, Sig-1Rs play significant roles governing calcium signaling and reactive oxygen species homeostasis to maintain proper neuronal functions. Studies showed that the Sig-1R is pivotal to regulate neuroplasticity and neural survival via multiple aspects of mechanism. Numerous reports have been focusing on Sig-1R's regulatory effects in ER stress, mitochondrial function, oxidative stress and protein chaperoning. In this book chapter, we will discuss the emerging role of Sig-1R in balancing the populations of neuron and glia and their implications in CNS diseases.


Asunto(s)
Enfermedades del Sistema Nervioso Central/metabolismo , Receptores sigma/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Humanos , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Plasticidad Neuronal/fisiología , Especies Reactivas de Oxígeno/metabolismo , Receptor Sigma-1
10.
Synapse ; 66(1): 42-51, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21905129

RESUMEN

We previously demonstrated that Sig-1Rs are critical regulators in neuronal morphogenesis and development via the regulation of oxidative stress and mitochondrial functions. In the present study, we sought to identify pathways and genes that are affected by Sig-1R. Gene expression profiles were examined in rat hippocampal neurons that had been cultured for 18 days in vitro (DIV). The cells were transduced with AAV siRNA targeting Sig-1R on DIV 10 for 7 days, followed by gene expression analysis using a rat genome cDNA array. The gene array results indicated that Sig-1R knockdown hampered cellular functions including steroid biogenesis, protein ubiquitination, actin cytoskeleton network, and Nrf-2 mediated oxidative stress. Many of the cellular components important for actin polymerization and synapse plasticity, including F-actin capping protein and neurofilaments, were significantly changed in AAV-siSig-1R neurons. Further, cytochrome c was reduced in AAV-Sig-1R neurons whereas free-radical generating enzymes including cytochrome p450 and cytochrome b-245 were increased. The microarray results also suggest that Sig-1Rs may regulate genes that are involved in the pathogenesis of many CNS diseases including Alzheimer's disease and Parkinson's disease. These data further confirmed that Sig-1Rs play critical roles in the CNS and thus these findings may aid in future development of therapeutic treatments targeting neurodegenerative disorders.


Asunto(s)
Chaperonas Moleculares/metabolismo , Neuronas/metabolismo , Receptores sigma/metabolismo , Animales , Células Cultivadas , Perfilación de la Expresión Génica , Hipocampo/metabolismo , Chaperonas Moleculares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores sigma/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptor Sigma-1
11.
Proc Natl Acad Sci U S A ; 106(52): 22468-73, 2009 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-20018732

RESUMEN

Sigma-1 receptors (Sig-1Rs) are endoplasmic reticulum (ER)-resident proteins known to be involved in learning and memory. Dendritic spines in hippocampal neurons play important roles in neuroplasticity and learning and memory. This study tested the hypothesis that Sig-1Rs might regulate denritic spine formation in hippocampal neurons and examined potential mechanisms therein. In rat hippocampal primary neurons, the knockdown of Sig-1Rs by siRNAs causes a deficit in the formation of dendritic spines that is unrelated to ER Ca(2+) signaling or apoptosis, but correlates with the mitochondrial permeability transition and cytochrome c release, followed by caspase-3 activation, Tiam1 cleavage, and a reduction in Rac1.GTP. Sig-1R-knockdown neurons contain higher levels of free radicals when compared to control neurons. The activation of superoxide dismutase or the application of the hydroxyl-free radical scavenger N-acetyl cysteine (NAC) to the Sig-1R-knockdown neurons rescues dendritic spines and mitochondria from the deficits caused by Sig-1R siRNA. Further, the caspase-3-resistant TIAM1 construct C1199DN, a stable guanine exchange factor able to constitutively activate Rac1 in the form of Rac1.GTP, also reverses the siRNA-induced dendritic spine deficits. In addition, constitutively active Rac1.GTP reverses this deficit. These results implicate Sig-1Rs as endogenous regulators of hippopcampal dendritic spine formation and suggest a free radical-sensitive ER-mitochondrion-Rac1.GTP pathway in the regulation of dendritic spine formation in the hippocampus.


Asunto(s)
Espinas Dendríticas/fisiología , Guanosina Trifosfato/metabolismo , Hipocampo/fisiología , Receptores sigma/fisiología , Proteína de Unión al GTP rac1/metabolismo , Animales , Apoptosis , Señalización del Calcio , Caspasa 3/metabolismo , Células Cultivadas , Espinas Dendríticas/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Activación Enzimática , Depuradores de Radicales Libres/farmacología , Radicales Libres/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Aprendizaje/fisiología , Memoria/fisiología , Mitocondrias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Plasticidad Neuronal/fisiología , ARN Interferente Pequeño/genética , Ratas , Receptores sigma/antagonistas & inhibidores , Receptores sigma/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estrés Fisiológico , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Transfección
12.
J Leukoc Biol ; 112(5): 1233-1243, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36073341

RESUMEN

Macrophages play a significant role in HIV infection and contribute to pathogenesis of comorbidities as well as establishment of the viral reservoir in people living with HIV. While CD4+ T cells are considered the main targets of HIV infection, infected macrophages resist the cytopathic effects of infection, contributing to the persistent HIV reservoir. Furthermore, activated macrophages drive inflammation and contribute to the development of comorbidities, including HIV-associated CNS dysfunction. Better understanding the role of macrophages in HIV infection, persistence, and comorbidities can lead to development of innovative therapeutic strategies to address HIV-related outcomes in people living with HIV. In October 2021, the National Institute of Mental Health and the Ragon Institute of MGH, MIT, and Harvard conducted a virtual meeting on role of macrophages in HIV infection, pathogenesis, and cure. This review article captures the key highlights from this meeting and provides an overview of interests and activities of various NIH institutes involved in supporting research on macrophages and HIV.


Asunto(s)
Infecciones por VIH , Humanos , Infecciones por VIH/tratamiento farmacológico , Latencia del Virus , Macrófagos/patología , Linfocitos T CD4-Positivos
13.
J Pharmacol Exp Ther ; 332(3): 1054-63, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19940104

RESUMEN

sigma-1 Receptors are endoplasmic reticulum (ER) chaperones that are implicated in the neuroplasticity associated with psychostimulant abuse. We immunocytochemically examined the distribution of sigma-1 receptors in the brain of drug-naive rats and then examined the dynamics of sigma-1 receptors and other ER chaperones in specific brain subregions of rats that self-administered methamphetamine, received methamphetamine passively, or received only saline injections. sigma-1 Receptors were found to be expressed in moderate to high levels in the olfactory bulb, striatum, nucleus accumbens shell, olfactory tubercle, amygdala, hippocampus, red nucleus, ventral tegmental area, substantia nigra, and locus ceruleus. Methamphetamine, whether self-administered or passively received, significantly elevated ER chaperones including the sigma-1 receptor, BiP, and calreticulin in the ventral tegmental area and substantia nigra. In the olfactory bulb, however, only the sigma-1 receptor chaperone was increased, and this increase occurred only in rats that actively self-administered methamphetamine. Consistent with an increase in sigma-1 receptors, extracellular signal-regulated kinase was found to be activated and protein kinase A attenuated in the olfactory bulb of methamphetamine self-administering rats. sigma-1 Receptors in the olfactory bulb were found to be colocalized with dopamine D1 receptors. These results indicate that methamphetamine induces ER stress in the ventral tegmental area and substantia nigra in rats whether the drug is received actively or passively. However, the changes seen only in rats that actively self-administered methamphetamine suggest that D1 and sigma-1 receptors in the olfactory bulb might play an important role in the motivational conditioning/learning aspects of methamphetamine self-administration in the rat.


Asunto(s)
Encéfalo/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Retículo Endoplásmico/metabolismo , Metanfetamina/farmacología , Chaperonas Moleculares/biosíntesis , Receptores sigma/biosíntesis , Animales , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Células CHO , Estimulantes del Sistema Nervioso Central/administración & dosificación , Cricetinae , Cricetulus , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Masculino , Metanfetamina/administración & dosificación , Ratas , Ratas Sprague-Dawley , Autoadministración , Receptor Sigma-1
14.
Synapse ; 64(4): 267-73, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19953654

RESUMEN

Opioids have been demonstrated to play an important role in CNS development by affecting proliferation and differentiation in various types of neural cells. This study examined the effect of a stable delta opioid peptide [D-Ala(2), D-Leu(5)]-enkephalin (DADLE) on proliferation and differentiation in an AF5 CNS neural progenitor cell line derived from rat mesencephalic cells. DADLE (1 pM, 0.1 nM, or 10 nM) caused a significant growth inhibition on AF5 cells. The opioid antagonist naltrexone at 0.1 nM also caused growth inhibition in the same cells. When DADLE and naltrexone were both added to the AF5 cells, the resultant growth inhibition was apparently additive. DADLE alone or DADLE in combination with naltrexone did not cause apoptosis as evidenced by negative TUNEL staining. The cell-cycle progression analysis indicated that both DADLE (0.1 nM) and naltrexone (0.1 nM) caused an arrest of AF5 cell cycle progression at the G1 checkpoint. Neuronal marker indicated that DADLE- or naltrexone-treated AF5 cells tend to differentiate more when compared to controls. Results demonstrate the nonopioid action of both DADLE and naltrexone on cell cycle arrest and differentiation in a CNS neural progenitor cell line. Results also suggest some potential utilization of DADLE and/or naltrexone in stem cell research.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Leucina Encefalina-2-Alanina/farmacología , Naltrexona/análogos & derivados , Neuronas/fisiología , Células Madre/efectos de los fármacos , Análisis de Varianza , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Citometría de Flujo/métodos , Etiquetado Corte-Fin in Situ/métodos , Naltrexona/farmacología , Neuronas/efectos de los fármacos , Ratas , Factores de Tiempo , Tubulina (Proteína)/metabolismo
15.
Elife ; 82019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31596232

RESUMEN

Cocaine is an addictive drug that acts in brain reward areas. Recent evidence suggests that cocaine stimulates synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG) in midbrain, increasing dopamine neuron activity via disinhibition. Although a mechanism for cocaine-stimulated 2-AG synthesis is known, our understanding of 2-AG release is limited. In NG108 cells and mouse midbrain tissue, we find that 2-AG is localized in non-synaptic extracellular vesicles (EVs) that are secreted in the presence of cocaine via interaction with the chaperone protein sigma-1 receptor (Sig-1R). The release of EVs occurs when cocaine causes dissociation of the Sig-1R from ADP-ribosylation factor (ARF6), a G-protein regulating EV trafficking, leading to activation of myosin light chain kinase (MLCK). Blockade of Sig-1R function, or inhibition of ARF6 or MLCK also prevented cocaine-induced EV release and cocaine-stimulated 2-AG-modulation of inhibitory synapses in DA neurons. Our results implicate the Sig-1R-ARF6 complex in control of EV release and demonstrate that cocaine-mediated 2-AG release can occur via EVs.


Asunto(s)
Cocaína/farmacología , Endocannabinoides/metabolismo , Vesículas Extracelulares/metabolismo , Receptores sigma/metabolismo , Transducción de Señal/efectos de los fármacos , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Animales , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Ratones , Quinasa de Cadena Ligera de Miosina/metabolismo , Receptor Sigma-1
16.
PLoS Med ; 5(6): e117, 2008 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-18593214

RESUMEN

BACKGROUND: Prenatal exposure of the developing brain to cocaine causes morphological and behavioral abnormalities. Recent studies indicate that cocaine-induced proliferation inhibition and/or apoptosis in neural progenitor cells may play a pivotal role in causing these abnormalities. To understand the molecular mechanism through which cocaine inhibits cell proliferation in neural progenitors, we sought to identify the molecules that are responsible for mediating the effect of cocaine on cell cycle regulation. METHODS AND FINDINGS: Microarray analysis followed by quantitative real-time reverse transcription PCR was used to screen cocaine-responsive and cell cycle-related genes in a neural progenitor cell line where cocaine exposure caused a robust anti-proliferative effect by interfering with the G1-to-S transition. Cyclin A2, among genes related to the G1-to-S cell cycle transition, was most strongly down-regulated by cocaine. Down-regulation of cyclin A was also found in cocaine-treated human primary neural and A2B5+ progenitor cells, as well as in rat fetal brains exposed to cocaine in utero. Reversing cyclin A down-regulation by gene transfer counteracted the proliferation inhibition caused by cocaine. Further, we found that cocaine-induced accumulation of reactive oxygen species, which involves N-oxidation of cocaine via cytochrome P450, promotes cyclin A down-regulation by causing an endoplasmic reticulum (ER) stress response, as indicated by increased phosphorylation of eIF2alpha and expression of ATF4. In the developing rat brain, the P450 inhibitor cimetidine counteracted cocaine-induced inhibition of neural progenitor cell proliferation as well as down-regulation of cyclin A. CONCLUSIONS: Our results demonstrate that down-regulation of cyclin A underlies cocaine-induced proliferation inhibition in neural progenitors. The down-regulation of cyclin A is initiated by N-oxidative metabolism of cocaine and consequent ER stress. Inhibition of cocaine N-oxidative metabolism by P450 inhibitors may provide a preventive strategy for counteracting the adverse effects of cocaine on fetal brain development.


Asunto(s)
Cocaína/farmacología , Neuronas/efectos de los fármacos , Células Madre/efectos de los fármacos , Animales , Ciclo Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Células Cultivadas , Cimetidina/farmacología , Ciclina A/genética , Ciclina A/metabolismo , Ciclina A2 , Regulación hacia Abajo , Femenino , Humanos , Fosforilación , Embarazo , Ratas , Ratas Sprague-Dawley , Transfección
17.
Oxid Med Cell Longev ; 2017: 4582135, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28883901

RESUMEN

Sigma-1 receptor (Sig-1R) functions as a chaperon that interacts with multiple proteins and lipids and is implicated in neurodegenerative and psychiatric diseases. Here, we used Sig-1R KO mice to examine brain expression profiles of astrocytes and ubiquitinated proteins, which are both hallmarks of central nervous system (CNS) pathologies. Our results showed that Sig-1R KO induces increased glial fibrillary acidic protein (GFAP) expression in primary neuron-glia cultures and in the whole brain of fetus mice with concomitantly increased accumulations of ubiquitinated proteins. Astrogliosis was also observed in the neuron-glia culture. Upon proteasome or autophagy inhibitor treatments, the pronounced ubiquitinated proteins were further increased in Sig-1R KO neurons, indicating that the Sig-1R regulates both protein degradation and quality control systems. We found that Nrf2 (nuclear factor erythroid 2-related factor 2), which functions to overcome the stress condition, was enhanced in the Sig-1R KO systems especially when cells were under stressful conditions. Mutation or deficiency of Sig-1Rs has been observed in neurodegenerative models. Our study identifies the critical roles of Sig-1R in CNS homeostasis and supports the idea that functional complementation pathways are triggered in the Sig-1R KO pathology.


Asunto(s)
Gliosis/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Receptores sigma/metabolismo , Animales , Antioxidantes/metabolismo , Western Blotting , Células Cultivadas , Sistema Nervioso Central/metabolismo , Técnica del Anticuerpo Fluorescente , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo/fisiología , Receptor Sigma-1
18.
Artículo en Inglés | MEDLINE | ID: mdl-27077074

RESUMEN

Neurodegenerative diseases are linked to tauopathy as a result of cyclin dependent kinase 5 (cdk5) binding to its p25 activator instead of its p35 activator and becoming over-activated. The overactive complex stimulates the hyperphosphorylation of tau proteins, leading to neurofibrillary tangles (NFTs) and stunting axon growth and development. It is known that the sigma-1 receptor (Sig-1R), an endoplasmic reticulum chaperone, can be involved in axon growth by promoting neurite sprouting through nerve growth factor (NGF) and tropomyosin receptor kinase B (TrkB)[1, 2]. It has also been previously demonstrated that a Sig-1R deficiency impairs the process of neurogenesis by causing a down-regulation of N-methyl-D-aspartate receptors (NMDARs)[3]. The recent study by Tsai et al. sought to understand the relationship between Sig-1R and tauopathy[4]. It was discovered that the Sig-1R helps maintain proper tau phosphorylation and axon development by facilitating p35 myristoylation and promoting p35 turnover. Neurons that had the Sig-1R knocked down exhibited shortened axons and higher levels of phosphorylated tau proteins compared to control neurons. Here we discuss these recent findings on the role of Sig-1R in tauopathy and highlight the newly presented physiological consequences of the Sig-1R-lipid interaction, helping to understand the close relationship between lipids and neurodegeneration.

19.
Methods Mol Biol ; 1376: 133-40, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26552680

RESUMEN

The interface between the endoplasmic reticulum (ER) and mitochondria referred to as the MAM (mitochondria-associated ER membrane) plays important roles in many physiological functions. A specific marker for this important entity of cellular structure is urgently needed. Thus, we propose in this method chapter that the membrane-bound ER chaperone sigma-1 receptor serves as an ideal marker for the MAM. We describe in detail the preparation and purification of the MAM by using the sigma-1 receptor as the marker and demonstrate the uniqueness of this marker by using a variety of cells, peripheral and neuronal.


Asunto(s)
Fraccionamiento Celular/métodos , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Receptores sigma/metabolismo , Animales , Línea Celular , Humanos , Receptor Sigma-1
20.
Trends Pharmacol Sci ; 37(4): 262-278, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26869505

RESUMEN

The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum (ER) protein that resides specifically in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), an interface between ER and mitochondria. In addition to being able to translocate to the plasma membrane (PM) to interact with ion channels and other receptors, Sig-1R also occurs at the nuclear envelope, where it recruits chromatin-remodeling factors to affect the transcription of genes. Sig-1Rs have also been reported to interact with other membranous or soluble proteins at other loci, including the cytosol, and to be involved in several central nervous system (CNS) diseases. Here, we propose that Sig-1R is a pluripotent modulator with resultant multiple functional manifestations in living systems.


Asunto(s)
Receptores sigma/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Humanos , Mitocondrias/metabolismo , Terapia Molecular Dirigida , Receptores sigma/agonistas , Receptor Sigma-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA