Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioinformatics ; 35(24): 5309-5312, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31250907

RESUMEN

SUMMARY: JUCHMME is an open-source software package designed to fit arbitrary custom Hidden Markov Models (HMMs) with a discrete alphabet of symbols. We incorporate a large collection of standard algorithms for HMMs as well as a number of extensions and evaluate the software on various biological problems. Importantly, the JUCHMME toolkit includes several additional features that allow for easy building and evaluation of custom HMMs, which could be a useful resource for the research community. AVAILABILITY AND IMPLEMENTATION: http://www.compgen.org/tools/juchmme, https://github.com/pbagos/juchmme. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Programas Informáticos , Análisis de Secuencia
2.
Int Ophthalmol ; 40(4): 985-997, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31916060

RESUMEN

PURPOSE: To determine whether gene polymorphisms which are associated with age-related macular degeneration (AMD) influence treatments' response and specifically the antioxidant supplementation in dry AMD patients, as well as the anti-vascular endothelial growth factor (anti-VEGF) therapy in neovascular AMD patients. METHODS: A total of 170 patients with dry AMD and 52 neovascular AMD patients were genotyped for the following single nucleotide polymorphisms (SNPs): rs1061170/Y402H in CFH gene, rs10490924/A69S in ARMS2 gene, rs9332739/E318D and rs547154/IVS10 in C2 gene, and rs4151667/L9H and rs2072633/IVS17 in CFB gene. Treatment response was evaluated by comparing visual acuity and optical coherence tomography between baseline and at the end of the treatment. RESULTS: Τhe CFH/Y402H variant was associated with the response to antioxidants in dry AMD patients. Carriers of one or two CFH risk alleles displayed a lower chance of responding compared to those with no risk allele. No association of antioxidants' response and ARMS2/A69S genotype was identified. The analysis of the C2 and CFB genetic variants (protective SNPs) revealed that antioxidant supplementation was much more effective in protective SNP carriers. In neovascular AMD patients, the analysis indicated that Y402H homozygous patients were less likely to respond to anti-VEGF therapy compared to heterozygous. Regarding the ARMS2/A69S genotype, carriers of the risk variant experienced significantly worse treatment outcome compared to wild-type patients. CONCLUSION: In AMD patients, the efficacy of the antioxidant supplementation and the anti-VEGF therapy appears to differ by genotype. The detection of genetic variants, associated with treatment responsiveness, could lead to improved visual outcomes through genotype-directed therapy.


Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Factor H de Complemento/genética , Mácula Lútea/diagnóstico por imagen , Polimorfismo de Nucleótido Simple , ARN/genética , Agudeza Visual , Degeneración Macular Húmeda/genética , Anciano , Anciano de 80 o más Años , Alelos , Factor H de Complemento/metabolismo , Femenino , Angiografía con Fluoresceína , Fondo de Ojo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Coherencia Óptica , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Degeneración Macular Húmeda/diagnóstico , Degeneración Macular Húmeda/tratamiento farmacológico
3.
BMC Med Genet ; 20(1): 131, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31349801

RESUMEN

BACKGROUND: CHEK2 is involved in the DNA damage repair response Fanconi anemia (FA)-BRCA pathway. An increased risk for breast and other cancers has been documented in individuals who carry a single pathogenic CHEK2 variant. As for other genes involved in cancer predisposition, different types of pathogenic variants have been observed, including single nucleotide variations, short insertions/deletions, large genomic rearrangements and splicing variants. Splicing variants occurring in the splicing acceptor or donor site result in alternative mature mRNA produced and can cause intron retention, exon skipping, or creation of alternative 3' and 5' splice site. Thus, the pathogenicity of this type of alterations should always be explored experimentally and their effect in the mRNA and consequently the protein produced, should be defined. The aim of this study was the delineation of the effect of a splicing variant in the CHEK2 gene. CASE PRESENTATION: A healthy 28-year-old woman with a family history of breast and ovarian cancer was referred for genetic testing. The variant c.793-1G > A (rs730881687) was identified by Next Generation Sequencing (NGS) using a solution-based capture method, targeting 33 cancer predisposition genes (SeqCap EZ Probe library, Roche NimbleGen). Experimental analysis in patient-derived leukocytes using RT-PCR of mRNA followed by cDNA sequencing revealed the deletion of one base from the alternative transcript created (r.793del). This resulted in a frameshift leading to premature termination codon within exon 7 (p.(Asp265Thrfs*10)). CONCLUSIONS: This finding suggests that the CHEK2 splicing variant c.793-1G > A is a deleterious variant. Our case shows that RNA analysis is a valuable tool for uncharacterized splice site variants in individuals referred for testing and facilitates their personalized management.


Asunto(s)
Quinasa de Punto de Control 2/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad/genética , Empalme del ARN , Adulto , Empalme Alternativo , Secuencia de Bases , Neoplasias de la Mama/genética , Codón sin Sentido , Exones , Anemia de Fanconi/genética , Femenino , Pruebas Genéticas , Humanos , Intrones , Neoplasias Ováricas/genética , Linaje , ARN Mensajero/genética , Análisis de Secuencia de ADN
4.
BMC Cancer ; 19(1): 535, 2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31159747

RESUMEN

BACKGROUND: Hereditary cancer predisposition syndromes are responsible for approximately 5-10% of all diagnosed cancer cases. In the past, single-gene analysis of specific high risk genes was used for the determination of the genetic cause of cancer heritability in certain families. The application of Next Generation Sequencing (NGS) technology has facilitated multigene panel analysis and is widely used in clinical practice, for the identification of individuals with cancer predisposing gene variants. The purpose of this study was to investigate the extent and nature of variants in genes implicated in hereditary cancer predisposition in individuals referred for testing in our laboratory. METHODS: In total, 1197 individuals from Greece, Romania and Turkey were referred to our laboratory for genetic testing in the past 4 years. The majority of referrals included individuals with personal of family history of breast and/or ovarian cancer. The analysis of genes involved in hereditary cancer predisposition was performed using a NGS approach. Genomic DNA was enriched for targeted regions of 36 genes and sequencing was carried out using the Illumina NGS technology. The presence of large genomic rearrangements (LGRs) was investigated by computational analysis and Multiplex Ligation-dependent Probe Amplification (MLPA). RESULTS: A pathogenic variant was identified in 264 of 1197 individuals (22.1%) analyzed while a variant of uncertain significance (VUS) was identified in 34.8% of cases. Clinically significant variants were identified in 29 of the 36 genes analyzed. Concerning the mutation distribution among individuals with positive findings, 43.6% were located in the BRCA1/2 genes whereas 21.6, 19.9, and 15.0% in other high, moderate and low risk genes respectively. Notably, 25 of the 264 positive individuals (9.5%) carried clinically significant variants in two different genes and 6.1% had a LGR. CONCLUSIONS: In our cohort, analysis of all the genes in the panel allowed the identification of 4.3 and 8.1% additional pathogenic variants in other high or moderate/low risk genes, respectively, enabling personalized management decisions for these individuals and supporting the clinical significance of multigene panel analysis in hereditary cancer predisposition.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias Colorrectales/genética , Pruebas Genéticas/métodos , Mutación , Síndromes Neoplásicos Hereditarios/genética , Neoplasias Ováricas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios de Cohortes , Femenino , Genes BRCA1 , Genes BRCA2 , Predisposición Genética a la Enfermedad , Variación Genética , Grecia , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Persona de Mediana Edad , Linaje , Rumanía , Turquía , Adulto Joven
5.
Biochim Biophys Acta ; 1864(7): 747-54, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27048983

RESUMEN

A large number of modular domains that exhibit specific lipid binding properties are present in many membrane proteins involved in trafficking and signal transduction. These domains are present in either eukaryotic peripheral membrane or transmembrane proteins and are responsible for the non-covalent interactions of these proteins with membrane lipids. Here we report a profile Hidden Markov Model based method capable of detecting Membrane Binding Proteins (MBPs) from information encoded in their amino acid sequence, called MBPpred. The method identifies MBPs that contain one or more of the Membrane Binding Domains (MBDs) that have been described to date, and further classifies these proteins based on their position in respect to the membrane, either as peripheral or transmembrane. MBPpred is available online at http://bioinformatics.biol.uoa.gr/MBPpred. This method was applied in selected eukaryotic proteomes, in order to examine the characteristics they exhibit in various eukaryotic kingdoms and phyla.


Asunto(s)
Proteínas Portadoras/análisis , Cadenas de Markov , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/análisis , Proteoma , Algoritmos
6.
Biochim Biophys Acta ; 1844(2): 316-22, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24225132

RESUMEN

During the last two decades a large number of computational methods have been developed for predicting transmembrane protein topology. Current predictors rely on topogenic signals in the protein sequence, such as the distribution of positively charged residues in extra-membrane loops and the existence of N-terminal signals. However, phosphorylation and glycosylation are post-translational modifications (PTMs) that occur in a compartment-specific manner and therefore the presence of a phosphorylation or glycosylation site in a transmembrane protein provides topological information. We examine the combination of phosphorylation and glycosylation site prediction with transmembrane protein topology prediction. We report the development of a Hidden Markov Model based method, capable of predicting the topology of transmembrane proteins and the existence of kinase specific phosphorylation and N/O-linked glycosylation sites along the protein sequence. Our method integrates a novel feature in transmembrane protein topology prediction, which results in improved performance for topology prediction and reliable prediction of phosphorylation and glycosylation sites. The method is freely available at http://bioinformatics.biol.uoa.gr/HMMpTM.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Cadenas de Markov , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Análisis de Secuencia de Proteína/métodos , Sitios de Unión , Bases de Datos de Proteínas , Predicción/métodos , Glicosilación , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/metabolismo
7.
Biochim Biophys Acta ; 1834(4): 798-807, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23328413

RESUMEN

Molecular Recognition Features (MoRFs) are defined as short, intrinsically disordered regions in proteins that undergo disorder-to-order transition upon binding to their partners. As their name suggests, they are implicated in molecular recognition, which serves as the initial step for protein-protein interactions. Membrane proteins constitute approximately 30% of fully sequenced proteomes and are responsible for a wide variety of cellular functions. The aim of the current study was to identify and analyze MoRFs in membrane proteins. Two datasets of MoRFs, transmembrane and peripheral membrane protein MoRFs, were constructed from the Protein Data Bank, and sequence, structural and functional analysis was performed. Characterization of our datasets revealed their unique compositional biases and membrane protein MoRFs were categorized depending on their secondary structure after the interaction with their partners. Moreover, the position of transmembrane protein MoRFs in relation with the protein's topology was determined. Further studies were focused on functional analyses of MoRF-containing proteins and MoRFs' partners, associating them with protein binding, regulation and cell signaling, indicating half of them as putative hubs in protein-protein interaction networks. In conclusion, we provide insights into the disorder-based protein-protein interactions involving membrane proteins.


Asunto(s)
Proteínas de la Membrana , Proteoma/análisis , Relación Estructura-Actividad , Secuencia de Aminoácidos , Sitios de Unión , Biología Computacional , Bases de Datos de Proteínas , Proteínas de la Membrana/química , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
8.
Bioinformatics ; 29(19): 2517-8, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23894139

RESUMEN

SUMMARY: Molecular recognition features (MoRFs) are small, intrinsically disordered regions in proteins that undergo a disorder-to-order transition on binding to their partners. MoRFs are involved in protein-protein interactions and may function as the initial step in molecular recognition. The aim of this work was to collect, organize and store all membrane proteins that contain MoRFs. Membrane proteins constitute ∼30% of fully sequenced proteomes and are responsible for a wide variety of cellular functions. MoRFs were classified according to their secondary structure, after interacting with their partners. We identified MoRFs in transmembrane and peripheral membrane proteins. The position of transmembrane protein MoRFs was determined in relation to a protein's topology. All information was stored in a publicly available mySQL database with a user-friendly web interface. A Jmol applet is integrated for visualization of the structures. mpMoRFsDB provides valuable information related to disorder-based protein-protein interactions in membrane proteins. AVAILABILITY: http://bioinformatics.biol.uoa.gr/mpMoRFsDB


Asunto(s)
Bases de Datos Genéticas , Proteínas de la Membrana/análisis , Internet , Proteínas de la Membrana/química , Programas Informáticos
9.
In Vivo ; 38(4): 1671-1676, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38936911

RESUMEN

BACKGROUND/AIM: Gliomas are highly heterogeneous malignancies originating from diverse cell types within the brain. Although their precise etiology is frequently unknown, risk factors, such as chemical exposure, radiation, and specific uncommon genetic disorders have been identified. Diagnosis typically entails imaging tests, such as magnetic resonance imaging and computed tomography, complemented by a biopsy for confirmation, which may be further validated through genetic testing. CASE REPORT: Next-generation sequencing technology revealed germline co-deletion deletion of cyclin-dependent kinase inhibitor 2 A and B genes (CDKN2A and CDKN2B) in a patient diagnosed with pleomorphic xanthoastrocytoma based on the tumor's molecular characteristics. Following this result, we performed focused genetic analysis with use of multiplex ligation-dependent probe amplification technology for the mother that revealed the same co-deletion. Moreover, due to the father's neuroendocrine pancreatic cancer, application of the NGS technology detected a pathogenic variant in the BRCA1-interacting helicase 1 (BRIP1) gene. Comprehensive multi-gene testing conducted within the familial context, marked by a varied spectrum of cancer type, revealed a constellation of genetic predispositions. CONCLUSION: This case study underscores the critical importance of molecular testing for tumor characterization and highlights the pivotal role of genetic testing in facilitating early intervention and screening for at-risk family members. Furthermore, the identification of germline co-deletions in cancer lays the foundation for the development of targeted therapeutic strategies aimed at restoring normal cellular regulation and improving patient management.


Asunto(s)
Astrocitoma , Inhibidor p15 de las Quinasas Dependientes de la Ciclina , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Mutación de Línea Germinal , Humanos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Astrocitoma/genética , Astrocitoma/patología , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Mutación de Línea Germinal/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Predisposición Genética a la Enfermedad , Masculino , Femenino , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Linaje , Imagen por Resonancia Magnética , Eliminación de Gen
10.
JCO Precis Oncol ; 8: e2300332, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38271656

RESUMEN

PURPOSE: The pan-cancer presence of microsatellite instability (MSI)-positive tumors demonstrates its clinical utility as an agnostic biomarker for identifying immunotherapy-eligible patients. Additionally, MSI is a hallmark of Lynch syndrome (LS), the most prevalent cancer susceptibility syndrome among patients with colorectal and endometrial cancer. Therefore, MSI-high results should inform germline genetic testing for cancer-predisposing genes. However, in clinical practice, such analysis is frequently disregarded. METHODS: A next-generation sequencing (NGS)-based technique was used for MSI analysis in 4,553 patients with various tumor types. Upon request, somatic BRAF gene analysis was conducted. In addition, hereditary testing of cancer-associated genes was performed in MSI-high cases using a capture-based NGS protocol. MLH1 promoter methylation analysis was conducted retrospectively in patients with colorectal and endometrial cancer to further investigate the origin of MSI at the tumor level. RESULTS: The MSI positivity rate for the entire cohort was 5.27%. Endometrial, gastric, colorectal, urinary tract, and prostate cancers showed the highest proportion of MSI-high cases (15.69%, 8.54%, 7.40%, 4.55%, and 3.19%, respectively). A minority of 45 patients (22.73%) among the MSI-high cases underwent germline testing to determine whether the mismatch repair pathway deficiency was inherited. 24.44% of those who performed the genetic test carried a pathogenic variant in an LS-associated gene. Three MSI-high individuals had non-LS gene alterations, including BRCA1, BRCA2, and CDKN2A pathogenic variants, indicating the presence of non-LS-associated gene alterations among MSI-high patients. CONCLUSION: Although MSI analysis is routinely performed in clinical practice, as many as 77% of MSI-high patients do not undergo LS genetic testing, despite international guidelines strongly recommending it. BRAF and MLH1 methylation analysis could shed light on the somatic origin of MSI in 42.50% of the MSI-high patients; however, MLH1 analysis is barely ever requested in clinical practice.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Colorrectales , Neoplasias Endometriales , Síndromes Neoplásicos Hereditarios , Masculino , Femenino , Humanos , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Estudios Retrospectivos , Inestabilidad de Microsatélites , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Colorrectales/genética , Biomarcadores , Neoplasias Endometriales/diagnóstico , Neoplasias Endometriales/genética
11.
In Vivo ; 37(4): 1432-1444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37369490

RESUMEN

Alternative splicing (AS), a crucial cellular process, is a source of transcriptomic expansion and protein variability. Its contribution to cancer development and progression among a vast repertoire of human diseases, is highlighted lately and is under extensive investigation. In this review, the relative recent aspects of AS as a hallmark of cancer are described. In parallel, the importance of the identification of splicing-related variants through next-generation sequencing technologies is discussed. Cancer therapy and the management of patients and their families can highly benefit by the classification of these variants.


Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias , Humanos , Empalme Alternativo/genética , Neoplasias/genética , Secuenciación de Nucleótidos de Alto Rendimiento
12.
Arch Oral Biol ; 150: 105689, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37001412

RESUMEN

OBJECTIVE: Identify the disease-causing mutation in a patient with features of X-linked hypohidrotic ectodermal dysplasia, which is a genetic disorder characterized by hypodontia, hypohidrosis and hypotrichosis. It is caused by mutations in Ectodysplasin A gene, which encodes ectodysplasin A, a member of the tumor necrosis factor superfamily. DESIGN: Genetic analysis, was performed using chromosomal microarray analysis, whole exome sequencing and multiplex ligation-dependent probe amplification analysis in a 4-year-old boy with hypohidrotic ectodermal dysplasia features. Moreover, the boy's parents were tested for clinically significant findings identified in order to elucidate the pattern of inheritance of the finding detected in the proband. RESULTS: A novel deletion of entire exon 4 in Ectodysplasin A gene identified in the 4-year-old patient. This deletion was found in heterozygous state in the mother of the proband and was not detected in his father. RNA analysis revealed an in-frame deletion r.527_706del, p.(176_236del) in exon 4 of the Ectodysplasin A gene. CONCLUSION: We identified a novel gross deletion in the Ectodysplasin A gene in a male patient with X-linked hypohidrotic ectodermal dysplasia. Clinical and molecular genetic analysis are crucial to set an accurate diagnosis in patients with hypohidrotic ectodermal dysplasia. These results highlight the importance of the collagen domain of Ectodysplasin A, encoded by exon 4, for its function in vivo.


Asunto(s)
Displasia Ectodermal Anhidrótica Tipo 1 , Humanos , Masculino , Preescolar , Displasia Ectodermal Anhidrótica Tipo 1/genética , Ectodisplasinas/genética , Linaje , Mutación , Exones/genética
13.
J Neurol Sci ; 447: 120609, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36905813

RESUMEN

Technological advancements have facilitated the availability of reliable and thorough genetic analysis in many medical fields, including neurology. In this review, we focus on the importance of selecting the appropriate genetic test to aid in the accurate identification of disease utilizing currently employed technologies for analyzing monogenic neurological disorders. Moreover, the applicability of comprehensive analysis via NGS for various genetically heterogeneous neurological disorders is reviewed, revealing its efficiency in clarifying a frequently cloudy diagnostic picture and delivering a conclusive and solid diagnosis that is essential for the proper management of the patient. The feasibility and effectiveness of medical genetics in neurology require interdisciplinary cooperation among several medical specialties and geneticists, to select and perform the most relevant test according to each patient's medical history, using the most appropriate technological tools. The prerequisites for a comprehensive genetic analysis are discussed, highlighting the utility of appropriate gene selection, variant annotation, and classification. Moreover, genetic counseling and interdisciplinary collaboration could improve diagnostic yield further. Additionally, a sub-analysis is conducted on the 1,502,769 variation records with submitted interpretations in the Clinical Variation (ClinVar) database, with a focus on neurology-related genes, to clarify the value of suitable variant categorization. Finally, we review the current applications of genetic analysis in the diagnosis and personalized management of neurological patients and the advances in the research and scientific knowledge of hereditary neurological disorders that are evolving the utility of genetic analysis towards the individualization of the treatment strategy.


Asunto(s)
Enfermedades del Sistema Nervioso , Neurología , Humanos , Medicina de Precisión , Pruebas Genéticas , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/terapia , Bases de Datos Factuales , Secuenciación de Nucleótidos de Alto Rendimiento
14.
Cancers (Basel) ; 15(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38067228

RESUMEN

Our aim was to evaluate the concordance between the Myriad MyChoice and two alternative homologous recombination deficiency (HRD) assays (AmoyDx HRD Focus NGS Panel and OncoScan™) in patients with epithelial ovarian cancer (EOC). Tissue samples from 50 patients with newly diagnosed EOC and known Myriad MyChoice HRD status were included. DNA aliquots from tumor samples, previously evaluated with Myriad MyChoice and centrally reassessed, were distributed to laboratories to assess their HRD status using the two platforms, after being blinded for the Myriad MyChoice CDx HRD status. The primary endpoint was the concordance between Myriad MyChoice and each alternative assay. Tumor samples were evaluated with an AmoyDx® HRD Focus Panel (n = 50) and with OncoScan™ (n = 43). Both platforms provided results for all tumors. Analysis showed that correlation was high for the Myriad MyChoice GI score and AmoyDx® HRD Focus Panel (r = 0.79) or OncoScan™ (r = 0.87) (continuous variable). The overall percent agreement (OPA) between Myriad MyChoice GI status (categorical variable) and each alternative assay was 83.3% (68.6-93.3%) with AmoyDx and 77.5% (61.5-89.2%) with OncoScan™. The OPA in HRD status between Myriad MyChoice and AmoyDx was 88.6% (75.4-96.2). False-positive rates were 31.6% (6/19) for AmoyDx GI status and 31.9% (7/22) for OncoScan™, while false-negative rates were 0% (0/28, AmoyDx) and 11.1% (2/18, OncoScan™) compared with the Myriad MyChoice GI status. While substantial concordance between Myriad MyChoice and alternative assays was demonstrated, prospective validation of the analytical performance and clinical relevance of these assays is warranted.

15.
Oncol Lett ; 26(5): 480, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37809048

RESUMEN

Tumors harboring homologous recombination deficiency (HRD) are considered optimal candidates for poly(ADP-ribose) polymerase 1 (PARP) inhibitor treatment. Such deficiency can be detected by analyzing breast cancer type (BRCA)1/2 gene mutations, as well as mutations in other genes of the homologous recombination pathway. The algorithmic measurement of the HRD effect by identifying genomic instability (GI) has been used as biomarker. As compared with the direct measurement of somatic gene alterations, this approach increases the number of patients who could benefit from PARP inhibitor treatment. In the present study, the performance of the Oncoscan CNV assay, accompanied by appropriate bioinformatic algorithms, was evaluated for its performance in GI calculation and was compared with that of a validated next-generation sequencing (NGS) test (myChoice HRD test). In addition, the clinical utility of the GI score (GIS) and BRCA1/2 tumor analysis were investigated in a cohort of 444 patients with ovarian cancer. For that reason, single nucleotide polymorphism (SNP) arrays and appropriate bioinformatics algorithms were used to calculate GIS in 29 patients with ovarian cancer with known GIS status using a validated NGS test. Furthermore, BRCA1/2 analysis results were compared between the aforementioned assay and the amplicon-based Oncomine™ BRCA Research Assay. BRCA1/2 analysis was performed in 444 patients with ovarian cancer, while GIS was calculated in 175 BRCA1/2-negative cases. The bioinformatics algorithm developed for GIS calculation in combination with NGS BRCA1/2 analysis (RediScore), and the OncoscanR pipeline exhibited a high overall agreement with the validated test (93.1%). In addition, the Oncomine NGS assay had a 100% agreement with the validated test. The BRCA1/2 mutation frequency was 26.5% in the examined patients with ovarian cancer. GIS was positive in 40% of the BRCA1/2-negative cases. The RediScore bioinformatics algorithm developed for GIS calculation in combination with NGS BRCA1/2 analysis is a viable and effective approach for HRD calculation in patients with ovarian cancer, offering a positive prediction for PARP inhibitor responsiveness in 55% of the patients.

16.
Diagnostics (Basel) ; 13(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37761329

RESUMEN

Several tumor types have been efficiently treated with PARP inhibitors (PARPis), which are now approved for the treatment of ovarian, breast, prostate, and pancreatic cancers. The BRCA1/2 genes and mutations in many additional genes involved in the HR pathway may be responsible for the HRD phenomenon. The aim of the present study was to investigate the association between genomic loss of heterozygosity (gLOH) and alterations in 513 genes with targeted and immuno-oncology therapies in 406 samples using an NGS assay. In addition, the %gLOHs of 24 samples were calculated using the Affymetrix technology in order to compare the results obtained via the two methodologies. HR variations occurred in 20.93% of the malignancies, while BRCA1/2 gene alterations occurred in 5.17% of the malignancies. The %LOH was highly correlated with alterations in the BRCA1/2 genes, since 76.19% (16/21) of the BRCA1/2 positive tumors had a high %LOH value (p = 0.007). Moreover, the LOH status was highly correlated with the TP53 and KRAS statuses, but there was no association with the TMB value. Lin's concordance correlation coefficient for the 24 samples simultaneously examined via both assays was 0.87, indicating a nearly perfect agreement. In conclusion, the addition of gLOH analysis could assist in the detection of additional patients eligible for treatment with PARPis.

17.
Cancers (Basel) ; 16(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38201431

RESUMEN

Despite ongoing oncological advances, pancreatic ductal adenocarcinoma (PDAC) continues to have an extremely poor prognosis with limited targeted and immunotherapeutic options. Its genomic background has not been fully characterized yet in large-scale populations all over the world. Methods: Replicating a recent study from China, we collected tissue samples from consecutive Greek patients with pathologically-confirmed metastatic/unresectable PDAC and retrospectively investigated their genomic landscape using next generation sequencing (NGS). Findings: From a cohort of 409 patients, NGS analysis was successfully achieved in 400 cases (56.50% males, median age: 61.8 years). Consistent with a previous study, KRAS was the most frequently mutated gene in 81.50% of tested samples, followed by TP53 (50.75%), CDKN2 (8%), and SMAD4 (7.50%). BRCA1/2 variants with on-label indications were detected in 2%, and 87.50% carried a variant associated with off-label treatment (KRAS, ERBB2, STK11, or HRR-genes), while 3.5% of the alterations had unknown/preliminary-studied actionability (TP53/CDKN2A). Most of HRR-alterations were in intermediate- and low-risk genes (CHEK2, RAD50, RAD51, ATM, FANCA, FANCL, FANCC, BAP1), with controversial actionability: 8% harbored a somatic non-BRCA1/2 alteration, 6 cases had a high-risk alteration (PALB2, RAD51C), and one co-presented a PALB2/BRCA2 alteration. Elevated LOH was associated with HRR-mutated status and TP53 mutations while lowered LOH was associated with KRAS alterations. Including TMB/MSI data, the potential benefit from an NGS-oriented treatment was increased from 1.91% to 13.74% (high-MSI: 0.3%, TMB > 10 muts/MB: 12.78%). TMB was slightly increased in females (4.75 vs. 4.46 muts/MB) and in individuals with age > 60 (4.77 vs. 4.40 muts/MB). About 28.41% showed PD-L1 > 1% either in tumor or immune cells, 15.75% expressed PD-L1 ≥ 10%, and only 1.18% had PD-L1 ≥ 50%. This is the largest depiction of real-world genomic characteristics of European patients with PDAC, which offers some useful clinical and research insights.

18.
Cancers (Basel) ; 15(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958392

RESUMEN

BACKGROUND: Hereditary cancer predisposition syndromes are responsible for approximately 5-10% of all diagnosed cancer cases. In order to identify individuals at risk in a cost-efficient manner, family members of individuals carrying pathogenic alterations are tested only for the specific variant that was identified in their carrier relative. The purpose of this study was to investigate the clinical use and implementation of cascade family testing (CFT) in families of breast cancer patients with pathogenic/likely pathogenic variants (PVs/LPVs) in cancer-related predisposition genes. METHODS: Germline sequencing was carried out with NGS technology using a 52-gene panel, and cascade testing was performed by Sanger sequencing or MLPA. RESULTS: In a cohort of 1785 breast cancer patients (families), 20.3% were found to have PVs/LPVs. Specifically, 52.2%, 25.1%, and 22.7% of patients had positive findings in high-, intermediate-, and low-penetrance breast cancer susceptibility genes, respectively. Although CFT was recommended to all families, only 117 families (32.3%) agreed to proceed with genetic testing. Among the first-degree relatives who underwent CFT, 70.3% were female, and 108 of 121 (89.3%) were cancer free. Additionally, 42.7%, 36.7%, and 20.6% were offspring, siblings, and parents of the subject, respectively. Our data suggest that CFT was mostly undertaken (104/117, 88.8%) in families with positive findings in high-risk genes. CONCLUSIONS: Cascade family testing can be a powerful tool for primary cancer prevention by identifying at-risk family members. It is of utmost importance to implement genetic counseling approaches leading to increased awareness and communication of genetic testing results.

19.
Cancer Genomics Proteomics ; 20(5): 448-455, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37643779

RESUMEN

BACKGROUND/AIM: Germline copy number variation (CNV) is a type of genetic variant that predisposes significantly to inherited cancers. Today, next-generation sequencing (NGS) technologies have contributed to multi gene panel analysis in clinical practice. MATERIALS AND METHODS: A total of 2,163 patients were screened for cancer susceptibility, using a solution-based capture method. A panel of 52 genes was used for targeted NGS. The capture-based approach enables computational analysis of CNVs from NGS data. We studied the performance of the CNV module of the commercial software suite SeqPilot (JSI Medical Systems) and of the non-commercial tool panelcn.MOPS. Additionally, we tested the performance of digital multiplex ligation-dependent probe amplification (digitalMLPA). RESULTS: Pathogenic/likely pathogenic variants (P/LP) were identified in 464 samples (21.5%). CNV accounts for 10.8% (50/464) of pathogenic variants, referring to deletion/duplication of one or more exons of a gene. In patients with breast and ovarian cancer, CNVs accounted for 10.2% and 6.8% of pathogenic variants, respectively. In colorectal cancer patients, CNV accounted for 28.6% of pathogenic/likely pathogenic variants. CONCLUSION: In silico CNV detection tools provide a viable and cost-effective method to identify CNVs from NGS experiments. CNVs constitute a substantial percentage of P/LP variants, since they represent up to one of every ten P/LP findings identified by NGS multigene analysis; therefore, their evaluation is highly recommended to improve the diagnostic yield of hereditary cancer analysis.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias Ováricas , Femenino , Humanos , Predisposición Genética a la Enfermedad , Neoplasias Ováricas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Exones , Pruebas Genéticas
20.
Oncol Lett ; 23(4): 118, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35261632

RESUMEN

Next-generation sequencing (NGS) technology is used to evaluate hereditary cancer risks of patients worldwide; however, information concerning the germline multigene mutational spectrum among patients with breast cancer (BC) with consanguineous marriage (CM) is limited. Therefore, this prospective study aimed to determine the molecular characteristics of patients with BC who were tested with multigene hereditary cancer predisposition NGS panel and to show the effect of CM on cancer-related genes. Patients with BC with or without CM and family history (FH) of BC treated in our breast center were selected according to The National Comprehensive Cancer Network (NCCN) criteria for hereditary BC. In these patients, the analysis of a panel of 33 genes involved in hereditary cancer predisposition was performed after genetic counseling by using NGS. The pathogenic variant (PV) and the variant of uncertain significance (VUS) were found to be 15.8 and 47.4%, respectively. PVs were identified in 10/33 genes in 34 patients; 38.2% in BRCA1/2 genes; 6, 24, and 14% in other high, moderate and low-risk genes, respectively. The CM rate was 17.7% among the 215 patients with BC. The PV rate was 13.2% in patients with CM and 16.4% in patients without CM (P=0.80). When PV and VUS were evaluated together, the PV+VUS ratio was significantly higher in patients with CM and FH of BC than patients without CM and FH of BC (88.2 vs. 63.3%, P=0.045). Analysis of multigene panel provided 9.76% additional PVs in moderate/low-risk genes. The PV rate was similar in patients with BC with or without CM. A high PV+VUS ratio in patients with CM and FH of BC suggests that genes whose importance are unknown are likely to be pathogenic genes later.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA