Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Elife ; 92020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33284111

RESUMEN

The Aedesaegypti mosquito shows extreme sexual dimorphism in feeding. Only females are attracted to and obtain a blood-meal from humans, which they use to stimulate egg production. The fruitless gene is sex-specifically spliced and encodes a BTB zinc-finger transcription factor proposed to be a master regulator of male courtship and mating behavior across insects. We generated fruitless mutant mosquitoes and showed that males failed to mate, confirming the ancestral function of this gene in male sexual behavior. Remarkably, fruitless males also gain strong attraction to a live human host, a behavior that wild-type males never display, suggesting that male mosquitoes possess the central or peripheral neural circuits required to host-seek and that removing fruitless reveals this latent behavior in males. Our results highlight an unexpected repurposing of a master regulator of male-specific sexual behavior to control one module of female-specific blood-feeding behavior in a deadly vector of infectious diseases.


Sexual dimorphism is a phenomenon among animals, insects and plants where the two sexes of a species show differences in body size, physical features or colors. The bushy mane of a male lion, for example, is nowhere to be seen on a female lioness, and only male peacocks have extravagant tails. Most examples of sexual dimorphism, such as elaborate visual displays or courtship behaviors, are linked to mating. However, there are a few species where behavioral differences between the sexes are not connected to mating. Mosquitoes are an example: while female mosquitoes feed on humans, and are attracted to a person's body heat and odor, male mosquitoes have little interest in biting humans for their blood. Therefore, female mosquitoes are the ones responsible for transmitting the viruses that cause certain blood-borne diseases such as dengue fever or Zika. Determining which genes are linked to feeding behaviors in mosquitoes could allow researchers to genetically engineer females so they no longer bite people, thus stopping the spread of these diseases. Unfortunately, the genes that control mosquito feeding behaviors have not been well studied. In other insects, some of the genes that control mating behaviors that depend on sex have been identified. For example, a gene called fruitless controls courtship behaviors in male flies and silkworms, and is thought to be the 'master regulator' of male sexual behavior across insects. Yet it remains to be seen whether the fruitless gene has any effect in mosquitoes, where sex differences relate to feeding habits. To investigate this, Basrur et al. removed the fruitless gene from Aedes aegypti mosquitoes. The genetically altered male mosquitoes became unable to mate successfully, but ­ similar to unmodified males ­ still preferred sugar water over blood when feeding. Unlike unmodified males, however, the male mosquitoes lacking fruitless were attracted to the body odor of a person's arm (like females). These results reveal that fruitless, a gene that controls sex-specific mating behaviors in other insects, controls a sex-specific feeding behavior in mosquitoes. The fruitless gene, Basrur et al. speculate, likely gained this role controlling mosquito feeding behavior in the course of evolution. More research is required to fully understand the effects of the fruitless gene in male and female mosquitoes.


Asunto(s)
Conducta Alimentaria/fisiología , Mosquitos Vectores/genética , Mosquitos Vectores/metabolismo , Conducta Sexual Animal/fisiología , Aedes/genética , Animales , Femenino , Humanos , Masculino , Odorantes , Reproducción , Caracteres Sexuales , Factores de Transcripción/genética , Dedos de Zinc/fisiología
2.
Neuron ; 107(5): 874-890.e8, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32589877

RESUMEN

The maturation of the mammalian brain occurs after birth, and this stage of neuronal development is frequently impaired in neurological disorders, such as autism and schizophrenia. However, the mechanisms that regulate postnatal brain maturation are poorly defined. By purifying neuronal subpopulations across brain development in mice, we identify a postnatal switch in the transcriptional regulatory circuits that operates in the maturing mammalian brain. We show that this developmental transition includes the formation of hundreds of cell-type-specific neuronal enhancers that appear to be modulated by neuronal activity. Once selected, these enhancers are active throughout adulthood, suggesting that their formation in early life shapes neuronal identity and regulates mature brain function.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Regulación de la Expresión Génica/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Animales , Metilación de ADN/fisiología , Ratones , Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA