Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Proteome Res ; 16(3): 1364-1375, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28088864

RESUMEN

An understanding of how cells respond to perturbation is essential for biological applications; however, most approaches for profiling cellular response are limited in scope to pre-established targets. Global analysis of molecular mechanism will advance our understanding of the complex networks constituting cellular perturbation and lead to advancements in areas, such as infectious disease pathogenesis, developmental biology, pathophysiology, pharmacology, and toxicology. We have developed a high-throughput multiomics platform for comprehensive, de novo characterization of cellular mechanisms of action. Platform validation using cisplatin as a test compound demonstrates quantification of over 10 000 unique, significant molecular changes in less than 30 days. These data provide excellent coverage of known cisplatin-induced molecular changes and previously unrecognized insights into cisplatin resistance. This proof-of-principle study demonstrates the value of this platform as a resource to understand complex cellular responses in a high-throughput manner.


Asunto(s)
Células/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Redes y Vías Metabólicas , Apoptosis , Línea Celular , Supervivencia Celular , Cisplatino/farmacología , Biología Computacional/métodos , Humanos
2.
Elife ; 122024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682900

RESUMEN

The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the 'WIN' site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteína de la Leucemia Mieloide-Linfoide , Proteínas Nucleares , Ribosomas , Proteína p53 Supresora de Tumor , Humanos , Antineoplásicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Peptidomiméticos/farmacología
3.
bioRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37546802

RESUMEN

The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the "WIN" site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small molecule WIN site inhibitors, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anti-cancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anti-cancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.

4.
Bioinformatics ; 27(22): 3214-5, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21965817

RESUMEN

SUMMARY: The large amount of data produced by proteomics experiments requires effective bioinformatics tools for the integration of data management and data analysis. Here we introduce a suite of tools developed at Vanderbilt University to support production proteomics. We present the Backup Utility Service tool for automated instrument file backup and the ScanSifter tool for data conversion. We also describe a queuing system to coordinate identification pipelines and the File Collector tool for batch copying analytical results. These tools are individually useful but collectively reinforce each other. They are particularly valuable for proteomics core facilities or research institutions that need to manage multiple mass spectrometers. With minor changes, they could support other types of biomolecular resource facilities.


Asunto(s)
Proteómica/métodos , Programas Informáticos , Espectrometría de Masas , Proteoma/química
5.
iScience ; 25(11): 105341, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36339253

RESUMEN

Technological advances have made it feasible to collect multi-condition multi-omic time courses of cellular response to perturbation, but the complexity of these datasets impedes discovery due to challenges in data management, analysis, visualization, and interpretation. Here, we report a whole-cell mechanistic analysis of HL-60 cellular response to bendamustine. We integrate both enrichment and network analysis to show the progression of DNA damage and programmed cell death over time in molecular, pathway, and process-level detail using an interactive analysis framework for multi-omics data. Our framework, Mechanism of Action Generator Involving Network analysis (MAGINE), automates network construction and enrichment analysis across multiple samples and platforms, which can be integrated into our annotated gene-set network to combine the strengths of networks and ontology-driven analysis. Taken together, our work demonstrates how multi-omics integration can be used to explore signaling processes at various resolutions and demonstrates multi-pathway involvement beyond the canonical bendamustine mechanism.

6.
Methods Mol Biol ; 2064: 125-134, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31565771

RESUMEN

Imaging mass spectrometry is a powerful technology that combines the molecular measurements of mass spectrometry with the spatial information inherent to microscopy. This unique combination of capabilities is ideally suited for the analysis of metabolites and lipids from single cells. This chapter describes a methodology for the sample preparation and analysis of single cells using high performance MALDI FTICR MS. Using this approach, we are able to generate profiles of lipid and metabolite expression from single cells that characterize cellular heterogeneity. This approach also enables the detection of variations in the expression profiles of lipids and metabolites induced by chemical stimulation of the cells. These results demonstrate that MALDI IMS provides an insightful view of lipid and metabolite expression useful in the characterization of a number of biological systems at the single cell level.


Asunto(s)
Lípidos/análisis , Metabolómica/métodos , Análisis de la Célula Individual/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Diseño de Equipo , Metabolismo de los Lípidos , Metaboloma , Metabolómica/instrumentación , Ratones , Células RAW 264.7 , Análisis de la Célula Individual/instrumentación , Manejo de Especímenes/instrumentación , Manejo de Especímenes/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación
7.
Metallomics ; 11(5): 982-993, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30968088

RESUMEN

Zinc (Zn) is an essential trace metal required for all forms of life, but is toxic at high concentrations. While the toxic effects of high levels of Zn are well documented, the mechanism of cell death appears to vary based on the study and concentration of Zn. Zn has been proposed as an anti-cancer treatment against non-small cell lung cancer (NSCLC). The goal of this analysis was to determine the effects of Zn on metabolism and cell death in A549 cells. Here, high throughput multi-omics analysis identified the molecular effects of Zn intoxication on the proteome, metabolome, and transcriptome of A549 human NSCLC cells after 5 min to 24 h of Zn exposure. Multi-omics analysis combined with additional experimental evidence suggests Zn intoxication induces ferroptosis, an iron and lipid peroxidation-dependent programmed cell death, demonstrating the utility of multi-omics analysis to identify cellular response to intoxicants.


Asunto(s)
Ferroptosis/efectos de los fármacos , Pulmón/patología , Zinc/toxicidad , Células A549 , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Genómica , Humanos , NAD/biosíntesis , Necrosis , Unión Proteica/efectos de los fármacos , Factores de Tiempo
8.
J Am Soc Mass Spectrom ; 29(5): 1012-1020, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29536413

RESUMEN

It has been widely recognized that individual cells that exist within a large population of cells, even if they are genetically identical, can have divergent molecular makeups resulting from a variety of factors, including local environmental factors and stochastic processes within each cell. Presently, numerous approaches have been described that permit the resolution of these single-cell expression differences for RNA and protein; however, relatively few techniques exist for the study of lipids and metabolites in this manner. This study presents a methodology for the analysis of metabolite and lipid expression at the level of a single cell through the use of imaging mass spectrometry on a high-performance Fourier transform ion cyclotron resonance mass spectrometer. This report provides a detailed description of the overall experimental approach, including sample preparation as well as the data acquisition and analysis strategy for single cells. Applying this approach to the study of cultured RAW264.7 cells, we demonstrate that this method can be used to study the variation in molecular expression with cell populations and is sensitive to alterations in that expression that occurs upon lipopolysaccharide stimulation. Graphical Abstract.


Asunto(s)
Lípidos/análisis , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Análisis de la Célula Individual/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Lípidos/inmunología , Macrófagos/química , Ratones , Células RAW 264.7
9.
J Pathol Inform ; 7: 13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27141319

RESUMEN

BACKGROUND: Imaging mass spectrometry (IMS) generates molecular images directly from tissue sections to provide better diagnostic insights and expand the capabilities of clinical anatomic pathology. Although IMS technology has matured over recent years, the link between microscopy imaging currently used by pathologists and MS-based molecular imaging has not been established. METHODS: We adapted the Vanderbilt University Tissue Core workflow for IMS into a web-based system that facilitates remote collaboration. The platform was designed to perform within acceptable web response times for viewing, annotating, and processing high resolution microscopy images. RESULTS: We describe a microscopy-driven approach to tissue analysis by IMS. CONCLUSION: The Pathology Interface for Mass Spectrometry is designed to provide clinical access to IMS technology and deliver enhanced diagnostic value.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA