Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 291(28): 14773-87, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27226609

RESUMEN

Manganese homeostasis involves coordinated regulation of specific proteins involved in manganese influx and efflux. However, the proteins that are involved in detoxification/efflux have not been completely resolved nor has the basis by which they select their metal substrate. Here, we compared six proteins, which were reported to be involved in manganese detoxification/efflux, by evaluating their ability to reduce manganese toxicity in chicken DT40 cells, finding that human ZnT10 (hZnT10) was the most significant contributor. A domain swapping and substitution analysis between hZnT10 and the zinc-specific transporter hZnT1 showed that residue Asn(43), which corresponds to the His residue constituting the potential intramembranous zinc coordination site in other ZnT transporters, is necessary to impart hZnT10's unique manganese mobilization activity; residues Cys(52) and Leu(242) in transmembrane domains II and V play a subtler role in controlling the metal specificity of hZnT10. Interestingly, the His → Asn reversion mutant in hZnT1 conferred manganese transport activity and loss of zinc transport activity. These results provide important information about manganese detoxification/efflux mechanisms in vertebrate cells as well as the molecular characterization of hZnT10 as a manganese transporter.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Manganeso/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Línea Celular , Técnicas de Silenciamiento del Gen , Homología de Secuencia de Aminoácido
2.
Sci Rep ; 8(1): 14084, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30237557

RESUMEN

The physiological roles of Zn transporter (ZNT) proteins are being increasingly recognized, and three dimensional structures of ZNT bacterial homologs have facilitated our understanding of their biochemical characteristics at the molecular level. However, the biological role of the unique structural features of vertebrate ZNTs, which are absent in their bacterial homologues, is not completely understood. These ZNT sequences include a cytosolic His-rich loop between transmembrane helices IV and V and the cytosolic N-terminus. This study investigated the contribution of these features to zinc transport by ZNT proteins. The importance of the His residues in the cytosolic His-rich loop was investigated using ZNT2 Ala substitution and deletion mutants. The presence of His residues was not essential for zinc transport, even though they possibly participate in modulation of zinc transport activity. Furthermore, we determined the role of the N-terminus by characterizing ZNT2 and ZNT3 domain-swapped and deletion mutants. Unexpectedly, the N-terminus was also not essential for zinc transport by ZNT2 and the domain-swapped ZNT2 mutant, in which the cytosolic His-rich loop was substituted with that of ZNT3. These results provide molecular insights into understanding the roles of the cytosolic parts of ZNT2, ZNT3, and probably other members of their subgroup.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Citosol/metabolismo , Animales , Línea Celular , Pollos , Zinc/metabolismo
3.
PLoS One ; 8(10): e77445, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24204829

RESUMEN

The activation process of secretory or membrane-bound zinc enzymes is thought to be a highly coordinated process involving zinc transport, trafficking, transfer and coordination. We have previously shown that secretory and membrane-bound zinc enzymes are activated in the early secretory pathway (ESP) via zinc-loading by the zinc transporter 5 (ZnT5)-ZnT6 hetero-complex and ZnT7 homo-complex (zinc transport complexes). However, how other proteins conducting zinc metabolism affect the activation of these enzymes remains unknown. Here, we investigated this issue by disruption and re-expression of genes known to be involved in cytoplasmic zinc metabolism, using a zinc enzyme, tissue non-specific alkaline phosphatase (TNAP), as a reporter. We found that TNAP activity was significantly reduced in cells deficient in ZnT1, Metallothionein (MT) and ZnT4 genes (ZnT1(-/-) MT(-/-) ZnT4(-/-) cells), in spite of increased cytosolic zinc levels. The reduced TNAP activity in ZnT1(-/-) MT(-/-) ZnT4(-/-) cells was not restored when cytosolic zinc levels were normalized to levels comparable with those of wild-type cells, but was reversely restored by extreme zinc supplementation via zinc-loading by the zinc transport complexes. Moreover, the reduced TNAP activity was adequately restored by re-expression of mammalian counterparts of ZnT1, MT and ZnT4, but not by zinc transport-incompetent mutants of ZnT1 and ZnT4. In ZnT1(-/-) MT(-/-) ZnT4(-/-) cells, the secretory pathway normally operates. These findings suggest that cooperative zinc handling of ZnT1, MT and ZnT4 in the cytoplasm is required for full activation of TNAP in the ESP, and present clear evidence that the activation process of zinc enzymes is elaborately controlled.


Asunto(s)
Fosfatasa Alcalina/genética , Proteínas Aviares/genética , Proteínas de Transporte de Catión/genética , Metalotioneína/genética , Vías Secretoras/genética , Transducción de Señal/genética , Zinc/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Proteínas Aviares/metabolismo , Linfocitos B/citología , Linfocitos B/metabolismo , Proteínas de Transporte de Catión/deficiencia , Línea Celular Transformada , Pollos/genética , Pollos/metabolismo , Citoplasma/metabolismo , Activación Enzimática , Regulación de la Expresión Génica , Metalotioneína/deficiencia , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA