Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 92(12): 8015-8020, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32449359

RESUMEN

Au nanoparticles (NPs) labeled with the handedness tag of "d-" or "l-", which were detached from inorganic chiral silica, showed both intrinsic chirality and surface enhanced Raman scattering (SERS) activity. In the presence of these chiral Au substrates, it was found that the enantiomer of cystine with the same handedness tag of Au NPs would show stronger Raman scattering signal intensities than those of the enantiomer with the opposite tag, where the differences could be over three times. Consequently, this work afforded a novel enantioselective recognition method on ordinary Raman spectroscopy by using chiral plasmonic metallic nanomaterials.

2.
Chemistry ; 24(25): 6519-6524, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29341293

RESUMEN

Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu2 O3 or Tb2 O3 ) nanoparticles (guests) were encapsulated into chiral non-helical SiO2 nanofibres (host) through calcination of chiral SiO2 hybrid nanofibres, trapping Eu3+ (or Tb3+ ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu3+ and 545 nm for Tb3+ . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts.

3.
Chemistry ; 21(44): 15667-75, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26350940

RESUMEN

A facile avenue to fabricate micrometer-sized chiral (L-, D-) and meso-like (dl-) SiO2 materials with unique structures by using crystalline complexes (cPEI/tart), composed of comblike polyethyleneimine (cPEI) and L-, D-, or dl-tartaric acid, respectively, as catalytic templates is reported. Interestingly, both chiral crystalline complexes appeared as regularly left- and right-twisted bundle structures about 10 µm in length and about 5 µm in diameter, whereas the dl-form occurred as circular structures with about 10 µm diameter. Subsequently, SiO2 @cPEI/tart hybrids with high silica content (>55.0 wt %) were prepared by stirring a mixture containing tetramethoxysilane (TMOS) and the aggregates of the crystalline complexes in water. The chiral SiO2 hybrids and calcined chiral SiO2 showed very strong CD signals and a nanofiber-based morphology on their surface, whereas dl-SiO2 showed no CD activity and a nanosheet-packed disklike shape. Furthermore, metallic silver nanoparticles (Ag NPs) were encapsulated in each silica hybrid to obtain chiral (D and L forms) and meso-like (dl form) Ag@SiO2 composites. Also, the reaction between L-cysteine (Lcys) and these Ag@SiO2 composites was preliminarily investigated. Only chiral L- and D-Ag@SiO2 composites promoted the reaction between Lcys and Ag NPs to produce a molecular [Ag-Lcys]n complex with remarkable exciton chirality, whereas the reaction hardly occurred in the case of meso-like (dl-) Ag@SiO2 composite.

4.
Chempluschem ; 85(4): 619-626, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32237231

RESUMEN

Systems that show circularly polarized luminescence (CPL) are usually constructed in one of two possible ways: either covalently binding the chiral moieties (usually organic compounds) to luminophores (inorganic or organic compounds) or associating the luminophores as guests with chiral hosts (usually organic compounds). Herein, we propose inorganic-based CPL-active systems constructed by the "chiral host-luminescent guest" strategy, in which silica acts as a chiral host to endow various luminescent guests with CPL. The chiral silica was modified by silane coupling with amino or phenyl groups to allow interaction with luminescent guests, and then used in combination with acidic achiral dyes, lead-halide type perovskites, and aggregation-induced emission luminogens (AIEgens). Interestingly, when these achiral guests were noncovalently confined in surface-modified chiral silica, the guests showed chiroptical behavior in the circular dichroism (CD) spectra, and thus became CPL active, even though they are not inherently chiral. The surface functional groups on the silica play very important roles in transferring the chiral information from the silica to the guests. This work provides a new concept for constructing CPL-active systems using inorganic materials as a chiral source.

5.
Nanoscale Adv ; 1(2): 581-591, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36132254

RESUMEN

Transfer of chirality from chiral organic molecules to metallic nanoparticles (NPs) is a very attractive field of research and some unique approaches to obtaining chiral metallic NPs have been developed. However, to date, there has been no report in the literature that the chiral information of silica can be transferred into metallic NPs. In this work, a new chirality transfer system to metallic NPs from chiral silica has been achieved. The chiral transfer was performed by simple two steps: (1) trapping metal cations of silver (Ag) and gold (Au) in chiral silica of nano fibrous bundles embedding poly(ethyleneimine) inside and (2) thermoreducing the metal ions into metallic NPs. The metallic NPs of Au and Ag grown around a silica frame, using a thermo-reduction (calcination) process, showed a spherical shape with a size of about 30 nm. Interestingly, the metallic NPs detached or isolated from the silica via crushing and/or hydrolysis of the silica showed remarkable circular dichroism activity in their plasmon absorption band with an exciton coupling feature. Using an atomic resolution scanning transmission protocol, it was found that the chiral metallic NPs have a definite distortion in the atomic array in their crystal lattice structures. In comparison, achiral metallic NPs, which were prepared using a similar method around achiral silica bundles, showed a precisely ordered atomic line without distortion.

6.
RSC Adv ; 8(29): 15951-15960, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35542199

RESUMEN

Polyethyleneimine (PEI) complexed with chiral d- (or l-) tartaric acid (tart) in water can self-organize into chiral and crystalline PEI/tart assemblies. It has been previously confirmed that the complexes of PEI/tart could work as catalytic/chiral templates to induce the deposition of SiO2 nanofibres with optical activity but without outwards shape chirality such as helices. In this work, we found that the templating functions of PEI/tart were still effective to prompt the deposition of TiO2 to form chiral PEI/tart@TiO2 hybrid nanofibres under aqueous and room temperature conditions within two hours. Furthermore, the co-deposition of TiO2 and SiO2 was also fulfilled to yield chiral PEI/tart@TiO2/SiO2 nanofibres. These TiO2-containing hybrid nanofibres showed non-helical shapes on the length scale; however, chiroptical signals with mirror relation around the UV-Vis absorption band of TiO2 remarkably appeared on their circular dichroism (CD) spectra. By means of the protocols of XRD, TEM, SEM, UV-Vis, CD and XPS, structural features and thermoproperties of the chiral TiO2 and SiO2/TiO2 were investigated.

7.
ACS Omega ; 2(4): 1431-1440, 2017 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31457515

RESUMEN

Silane coupling agents are well-known as surface modifiers for various kinds of silica (SiO2). However, in the present research, it has been found that they can also work as "hammerlike liquid" to pulverize different kinds of bulk amorphous SiO2 in aqueous systems. This new function was typically clarified by using 3-aminopropyltrimethoxysilane (APS) and bundles of chiral SiO2 nanofibers (with average diameter of ∼10 nm) as raw materials. By a simple reflux of the mixture of SiO2 nanofibers and excessive APS in pure H2O, the solid-containing mixture turned into a completely clear solution that contained sub-10 nm, amine-modified, and water-soluble hybrid SiO2 sols (HS-sols). Moreover, this solution showed blue luminescence under ultraviolet irradiation. Furthermore, the circular dichroism and vibrational circular dichroism spectra revealed that the HS-sols are optically active even though the pristine chiral SiO2 nanofibers were completely destroyed. It was considered that the chirality of SiO2 nanofibers was due to the asymmetric arrangement of Si and O atoms in chiral domains (<10 nm) on the Si-O-Si network of SiO2, and these domains are still preserved in chiral HS-sols. This green method has high potential for the recycling of rich SiO2 sources to obtain functional SiO2 nanomaterials with applications such as optical display, imaging, and chiral recognition. Also, it offers a tool for the analysis of the structural properties of SiO2 on the molecular scale.

8.
Nanoscale Horiz ; 2(3): 147-155, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32260658

RESUMEN

Constructing novel chiral inorganic nanomaterials is an emerging branch in chirality research. In this work, by employing a solid magnesiothermic reaction at 500-600 °C, we reduced chiral SiO2 nanofibers with average diameter ∼10 nm into chiral Si nanoplates with a size of about several hundred nm. The chirality of the as-prepared Si was judged by the pair of signals with a mirror relationship between 400-500 nm that appeared on the solid-state diffuse reflectance circular dichroism (DRCD) spectra for the l- and d-form Si. Furthermore, the chirality was also confirmed by induced vibrational circular dichroism (VCD) signals corresponding to the absorption bands in the infrared range of achiral organics (polyvinylpyrrolidone K90 and trimethoxyphenylsilane) absorbed onto chiral Si. The as-used SiO2 nanofibers possessed an ultra high-temperature (up to 900 °C) resistant chirality, which would be due to the asymmetric arrangement of Si and O atoms in small chiral domains (<10 nm) on the Si-O-Si network of SiO2. During the removal of oxygen atoms from Si-O-Si by Mg atoms, the arrangement of newly formed Si-Si bonds as well as the growth of Si crystals were still templated without racemization from the chiral information in SiO2. Consequently, the subnano/nano-scale (<10 nm) chiral information was in situ transferred via the so-called self-transfer mechanism, even though there was no retention of the outward shapes of the length-scale nanofiber SiO2 reactants in the Si products. This work offers a feasible chemical method to prepare chiral Si using abundant SiO2 raw materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA