Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Struct Funct ; 48(2): 211-221, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37766570

RESUMEN

Secretory pathway proteins are cotranslationally translocated into the endoplasmic reticulum (ER) of metazoan cells through the protein channel, translocon. Given that there are far fewer translocons than ribosomes in a cell, it is essential that secretory protein-translating ribosomes only occupy translocons transiently. Therefore, if translocons are obstructed by ribosomes stalled or slowed in translational elongation, it possibly results in deleterious consequences to cellular function. Hence, we investigated how translocon clogging by stalled ribosomes affects mammalian cells. First, we constructed ER-destined translational arrest proteins (ER-TAP) as an artificial protein that clogged the translocon in the ER membrane. Here, we show that the translocon clogging by ER-TAP expression activates triage of signal sequences (SS) in which secretory pathway proteins harboring highly efficient SS are preferentially translocated into the ER lumen. Interestingly, the translocon obstructed status specifically activates inositol requiring enzyme 1α (IRE1α) but not protein kinase R-like ER kinase (PERK). Given that the IRE1α-XBP1 pathway mainly induces the translocon components, our discovery implies that lowered availability of translocon activates IRE1α, which induces translocon itself. This results in rebalance between protein influx into the ER and the cellular translocation capacity.Key words: endoplasmic reticulum, translocation capacity, translocon clogging, IRE1, signal sequence.


Asunto(s)
Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Animales , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Señales de Clasificación de Proteína , Triaje , Estrés del Retículo Endoplásmico , Mamíferos/metabolismo
2.
J Biol Chem ; 293(48): 18421-18433, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30315102

RESUMEN

About 20 members of the protein-disulfide isomerase (PDI) family are present in the endoplasmic reticulum of mammalian cells. They are thought to catalyze thiol-disulfide exchange reactions within secretory or membrane proteins to assist in their folding or to regulate their functions. PDIp is a PDI family member highly expressed in the pancreas and known to bind estrogen in vivo and in vitro However, the physiological functions of PDIp remained unclear. In this study, we set out to identify its physiological substrates. By combining acid quenching and thiol alkylation, we stabilized and purified the complexes formed between endogenous PDIp and its target proteins from the mouse pancreas. MS analysis of these complexes helped identify the disulfide-linked PDIp targets in vivo, revealing that PDIp interacts directly with a number of pancreatic digestive enzymes. Interestingly, when pancreatic elastase, one of the identified proteins, was expressed alone in cultured cells, its proenzyme formed disulfide-linked aggregates within cells. However, when pancreatic elastase was co-expressed with PDIp, the latter prevented the formation of these aggregates and enhanced the production and secretion of proelastase in a form that could be converted to an active enzyme upon trypsin treatment. These findings indicate that the main targets of PDIp are digestive enzymes and that PDIp plays an important role in the biosynthesis of a digestive enzyme by assisting with the proper folding of the proenzyme within cells.


Asunto(s)
Páncreas/enzimología , Proteína Disulfuro Isomerasas/metabolismo , Animales , Disulfuros/metabolismo , Precursores Enzimáticos/biosíntesis , Estrógenos/metabolismo , Células HeLa , Humanos , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Páncreas/citología , Elastasa Pancreática/biosíntesis , Unión Proteica , Especificidad por Sustrato , alfa-Amilasas/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(8): 2864-9, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23386727

RESUMEN

In mammals, the prototypical endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme 1 (IRE1) has diverged into two paralogs. IRE1α is broadly expressed and mediates the unconventional splicing of X-box binding protein 1 (XBP1) mRNA during ER stress. By contrast, IRE1ß is expressed selectively in the digestive tract, and its function remains unclear. Here, we report that IRE1ß plays a distinctive role in mucin-secreting goblet cells. In IRE1ß(-/-) mice, aberrant mucin 2 (MUC2) accumulated in the ER of goblet cells, accompanied by ER distension and elevated ER stress signaling such as increased XBP1 mRNA splicing. In contrast, conditional IRE1α(-/-) mice showed no such ER distension but a marked decrease in spliced XBP1 mRNA. mRNA stability assay revealed that MUC2 mRNA was greatly stabilized in IRE1ß(-/-) mice. These findings suggest that in goblet cells, IRE1ß, but not IRE1α, promotes efficient protein folding and secretion in the ER by optimizing the level of mRNA encoding their major secretory product, MUC2.


Asunto(s)
Células Caliciformes/metabolismo , Proteínas de la Membrana/fisiología , Mucina 2/biosíntesis , Proteínas Serina-Treonina Quinasas/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mucina 2/genética , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética
4.
Biochem Biophys Res Commun ; 440(2): 245-50, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24055038

RESUMEN

ERdj5 (also known as JPDI) is a member of PDI family conserved in higher eukaryotes. This protein possesses an N-terminal J domain and C-terminal four thioredoxin domains each having a redox active site motif. Despite the insights obtained at the cellular level on ERdj5, the role of this protein in vivo is still unclear. Here, we present a simple method to purify and identify the disulfide-linked complexes of this protein efficiently from a mouse tissue. By combining acid quenching and thiol-alkylation, we identified a number of potential redox partners of ERdj5 from the mouse epididymis. Further, we show that ERdj5 indeed interacted with two of the identified proteins via formation of intermolecular disulfide bond. Thus, this approach enabled us to detect and identify redox partners of a PDI family member from an animal tissue.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Animales , Disulfuros/metabolismo , Epidídimo , Etilmaleimida/metabolismo , Masculino , Ratones , Ratones Noqueados , Oxidación-Reducción
5.
Cell Struct Funct ; 37(2): 177-87, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23018488

RESUMEN

Misfolded proteins in the endoplasmic reticulum (ER) are dislocated out of the ER to the cytosol, polyubiquitinated, and degraded by the ubiquitin-proteasome system in a process collectively termed ER-associated degradation (ERAD). Recent studies have established that a mammalian ER-localized transmembrane J-protein, DNAJB12, cooperates with Hsc70, a cytosolic Hsp70 family member, to promote the ERAD of misfolded membrane proteins. Interestingly, mammalian genomes have another J-protein called DNAJB14 that shows a high sequence similarity to DNAJB12. Yet, very little was known about this protein. Here, we report the characterization of DNAJB14. Immunofluorescence study and protease protection assay showed that, like DNAJB12, DNAJB14 is an ER-localized, single membrane-spanning J-protein with its J-domain facing the cytosol. We used co-immunoprecipitation assay to find that DNAJB14 can also specifically bind Hsc70 via its J-domain to recruit this chaperone to ER membrane. Remarkably, the overexpression of DNAJB14 accelerated the degradation of misfolded membrane proteins including a mutant of cystic fibrosis transmembrane conductance regulator (CFTRΔF508), but not that of a misfolded luminal protein. Furthermore, the DNAJB14-dependent degradation of CFTRΔF508 was compromised by MG132, a proteasome inhibitor, indicating that DNAJB14 can enhance the degradation of a misfolded membrane protein using the ubiquitin-proteasome system. Thus, the mammalian ER possesses two analogous J-proteins (DNAJB14 and DNAJB12) that both can promote the ERAD of misfolded transmembrane proteins. Compared with DNAJB12 mRNA that was widely expressed in mouse tissues, DNAJB14 mRNA was expressed more weakly, being most abundant in testis, implying its specific role in this tissue.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de la Membrana/química , Pliegue de Proteína , Secuencia de Aminoácidos , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/genética , Humanos , Cinética , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Chaperonas Moleculares , Datos de Secuencia Molecular , Células 3T3 NIH , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido
6.
FEBS Lett ; 582(5): 656-60, 2008 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-18242182

RESUMEN

Endoplasmic reticulum (ER) stress is associated with the functional disorder of the ER. During conditions of ER stress, cells induce at least two responses to maintain ER function: transcriptional upregulation of ER quality control genes, and translational attenuation of protein synthesis. Induction of ER quality control proteins is mediated by IRE1alpha, which activates the transcription factor XBP1 via an unconventional splicing event, while a partial translational attenuation is mediated by IRE1beta. Here, we show by both in vivo and in vitro analyses that the RNase domain of IRE1 determines the functional specificities of each of these isoforms.


Asunto(s)
Endorribonucleasas/química , Endorribonucleasas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Ribonucleasas/química , Secuencia de Bases , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Conformación de Ácido Nucleico , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Empalme del ARN/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , Factores de Transcripción del Factor Regulador X , Relación Estructura-Actividad , Factores de Transcripción , Proteína 1 de Unión a la X-Box
7.
Sci Rep ; 6: 24217, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27052593

RESUMEN

Mammalian inositol-requiring enzyme 1α (IRE1α) is the most conserved of all endoplasmic reticulum (ER) stress sensors, which includes activating transcription factor (ATF) 6 and double-stranded RNA-dependent protein kinase (PKR)-like ER kinase (PERK). IRE1α has been known to splice X-box binding protein 1 (XBP1) mRNA, which is induced by ATF6 under ER stress. This spliced XBP1 mRNA is translated into the active transcription factor that promotes the expression of specific genes to alleviate ER stress. Herein, we report that in addition to the induction of XBP1 expression by ATF6, IRE1α expression is induced by ATF4, which is downstream of PERK, under ER stress. Increased IRE1α expression results in a higher splicing ratio of XBP1 mRNA. This effect was not transient and affected not only the intensity but also the duration of the activated state of this pathway. These multiple regulatory mechanisms may modulate the response to various levels or types of ER stress.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteína 1 de Unión a la X-Box/metabolismo , eIF-2 Quinasa/metabolismo , Factor de Transcripción Activador 4/genética , Animales , Western Blotting , Células Cultivadas , Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Células HeLa , Células Hep G2 , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN/efectos de los fármacos , Conejos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tunicamicina/farmacología , Proteína 1 de Unión a la X-Box/genética , eIF-2 Quinasa/genética
8.
FEBS Lett ; 585(1): 133-8, 2011 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-21146530

RESUMEN

Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER stress. The ER stress sensor inositol requiring enzyme-1beta (IRE1ß), which is specifically expressed in intestinal epithelial cells, is thought to be involved in translational repression. However, its mechanism of action is not fully understood. Using a reporter that can evaluate and distinguish between translation efficiency in the cytosol and on the ER membrane, we show here that IRE1ß represses translation on the ER membrane but not in the cytosol, and that this selective repression depends on the RNase activity of IRE1ß.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endorribonucleasas/metabolismo , Proteínas de la Membrana/metabolismo , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Western Blotting , Citosol/metabolismo , Regulación hacia Abajo , Endorribonucleasas/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasas/metabolismo , Vías Secretoras , Estrés Fisiológico
9.
J Biol Chem ; 278(4): 2669-76, 2003 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-12446677

RESUMEN

Several endoplasmic reticulum (ER)-resident luminal proteins have a characteristic ER retrieval signal, KDEL, or its variants at their C terminus. Our previous work searching EST databases for proteins containing the C-terminal KDEL motif predicted some novel murine proteins, one of which designated JPDI (J-domain-containing protein disulfide isomerase-like protein) is characterized in this study. The primary structure of JPDI is unique, because in addition to a J-domain motif adjacent to the N-terminal translocation signal sequence, four thioredoxin-like motifs were found in a single polypeptide. As examined by Northern blotting, the expression of JPDI was essentially ubiquitous in tissues and almost independent of ER stress. A computational prediction that JPDI is an ER-resident luminal protein was experimentally supported by immunofluorescent staining of epitope-tagged JPDI-expressing cells together with glycosylation and protease protection studies of this protein. JPDI probably acts as a DnaJ-like partner of BiP, because a recombinant protein carrying the J-domain of JPDI associated with BiP in an ATP-dependent manner and enhanced its ATPase activity. We speculate that for the folding of some proteins in the ER, chaperoning by BiP and formation of proper disulfide bonds may synchronously occur in a JPDI-dependent manner.


Asunto(s)
Proteínas Portadoras/química , Retículo Endoplásmico/metabolismo , Proteínas de Choque Térmico , Chaperonas Moleculares/química , Biosíntesis de Proteínas , Proteínas/química , Tiorredoxinas/química , Células 3T3 , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Northern Blotting , Proteínas Portadoras/metabolismo , Chaperón BiP del Retículo Endoplásmico , Glutatión Transferasa/metabolismo , Proteínas del Choque Térmico HSP40 , Células HeLa , Humanos , Hidrólisis , Ratones , Microscopía Fluorescente , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas/fisiología , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Factores de Tiempo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA