Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(39): 22602-22608, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33000814

RESUMEN

The solubility of cellulose was systematically assessed in organic onium/inium hydroxide aqueous solutions (OHAS) having assorted cations, such as phosphonium, ammonium, piperidinium, morpholinium, pyrrolidinium, and cholinium. From a dissolution test of cellulose in OHAS, it was confirmed that the single most important factor in the dissolution is the high concentration of OHAS. In addition, having a weaker hydrogen bond network around OH and H2O was found to be important to facilitate the cellulose dissolution. In NMR analysis, the OHAS with an excellent cellulose solubility, such as tetrabutylphosphonium hydroxide ([P4444]OH), exhibited a chemical shift of water (δH2O) integrated with that of OH in the low frequency region (∼4.9 ppm), while choline hydroxide ([Ch]OH) with poor cellulose solubility showed δH2O higher than 5.2 ppm. A higher δH2O means that the protons are deshielded due to a stronger hydrogen bond network around H2O and OH, which indicates a strong self-associating property of OHAS that is unfavourable for the cellulose dissolution. Assuming that the strong self-associating property can be reduced by improving the hydrophobicity of organic cations, the methyl group in N-butyl-N-methylmorpholinium hydroxide ([Mor14]OH) was replaced by a butyl chain to shield the positive charge. While [Mor14]OH dissolved only 5 wt% of cellulose, the solubility in the synthesised OHAS, N,N-dibutylmorpholinium hydroxide ([Mor44]OH), was successfully improved to 20 wt%. In the present paper, cellulose solubility was also analysed in relation to the Kamlet-Taft parameters.

2.
Phys Chem Chem Phys ; 18(4): 2369-78, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26700822

RESUMEN

Dielectric properties of polyurethanes containing poly(propylene oxide) (PO) and poly(ethylene oxide) (EO) units are discussed, along with the results of direct current (DC) measurements and broadband electrical spectroscopy (BES) studies. The dielectric properties of polyether-containing polyurethanes (PUs) are compared to those of PUs containing 1000 ppm of ionic liquids (ILs) as antistatic agents. The effects of the chemical environment of these ILs, including anion-fixed polymers (PU-AF), cation-fixed polymers (PU-CF), and a simple mixture of IL with the PUs (PU-IL), are compared and discussed on the basis of ion mobility. DC measurements suggest that the charge current is attributed not only to the electrode polarization but also to continuous dielectric relaxation. BES studies elucidate that both fast and slow relaxations are taking place in EO-rich domains in pristine PU and PU-AF. The activation energies of the slow relaxation and of the ionic conductivity are similar, suggesting that the ionic conductivity of these materials is attributed to the ion exchange reaction in EO/ion complexes. In contrast, only fast relaxations are observed in the domains mostly comprised of ion-depleted EO in the PUs containing "free" anions, i.e., PU-CF and PU-IL. This suggests that [Tf2N](-) ligands are weakly interacting with the EO chains and contribute effectively to the ion conduction. Thus, enhanced ionic conductivity is observed in PU-CF and PU-IL, yielding sufficient antistatic effects. Taking into account its long shelf life, arising from the lack of IL bleed-out, PU-CF is concluded to be the most promising candidate.

3.
Materials (Basel) ; 16(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36837039

RESUMEN

In this work, the use of N-methyl-N-propylpiperidinium difluoro(oxalato)borate Pip13DFOB ionic liquid (IL), originally synthesized in our laboratory, as an additive for liquid electrolytes in lithium-ion batteries (LIBs), is proposed. The synthesized IL exhibits glass and melting transitions at -70.9 °C and 17.1 °C, respectively, and a thermal decomposition temperature over 230 °C. A mixture based on 1.0 M LiPF6 in 1:1 v/v ethylene carbonate (EC): dimethyl carbonate (DMC) electrolyte solution (so called LP30) and the IL was prepared and tested in lithium metal cells versus two different commercially available carbonaceous electrodes, i.e., graphite (KS6) and graphene (GnP), and versus a high voltage LiNi0.5Mn1.5O4 (LNMO) cathode. A noticeable improvement was observed for Li|LNMO cells with an IL-added electrolyte, which exhibited a high specific capacity above 120 mAh g-1 with a Coulombic efficiency above 93% throughout 200 cycles, while the efficiency fell below 80% after 80 cycles with the absence of IL. The results confirm that the IL is promising additive for the electrolyte, especially for a longer cycle life of high-voltage cells.

4.
ChemSusChem ; 16(7): e202202235, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36583704

RESUMEN

Silicon-based anodes composed of micrometric Si, graphite (MAG), LiI-Li3 PS4 solid electrolyte (LPSI), and carbon nanofiber (CNF), which can be prepared by straightforward manual grinding, are proposed in this study. The relation between composition and performance of the anodes is investigated through the mixture design approach, which allows discrimination of the effect of each component and also the combined effect of the components on the end performance. By increasing the fraction of LPSI in the anode, the capacity of the electrode is improved, and the best performance is obtained when the Si/MAG/LPSI ratio is 15 : 15 : 70. This composite integrated with 5 wt % CNF exhibits a capacity above 1200 mAh g-1 throughout 50 cycles in a bulk-type all-solid-state battery with LPSI as the electrolyte. Scanning electron microscopy (SEM) confirms that the presence of LPSI suppresses the aggregation of Si and improves the ratio of Si available for lithiation/delithiation.

5.
Polymers (Basel) ; 14(11)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35683957

RESUMEN

A safe and environmentally friendly material for corrosion removal from metals is proposed in this article. Electrochemically corroded copper was selected as a target material, and a deep eutectic solvent (DES) composed of choline chloride and ascorbic acid, in a molar ratio of 2:1, was developed to this end. Aqueous solutions of the DES with a concentration above 70 wt% were found to be effective in the dissolution of patina and less aggressive towards other materials such as CaCO3, which is the main component of limestone. These concentrated DES solutions were integrated with either cotton swabs or cellulose-based membranes and used for the cleaning of electrochemically corroded copper. The membrane containing 80 wt% DES aqueous solution exhibited the most desirable cleaning ability in terms of speed and area selectivity. X-ray diffraction analysis of the corroded copper before and after the application of the membrane was performed to demonstrate the successful corrosion removal.

6.
Int J Biol Macromol ; 132: 585-591, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30914367

RESUMEN

Organic onium hydroxide aqueous solutions (OHAS) are demonstrated to be potential solvents for the dissolution of lignin and its epoxidation. A series of OHAS has been assessed in terms of the solubility of soda lignin (SL) and Klason lignin (KL), which are moderately and rarely soluble in NaOH aq. soln., respectively. Tetrabutylphosphonium hydroxide ([P4444]OH) aqueous solution was found to exhibit a highest solubility, specifically 40 wt% of SL and 3.0 wt% of KL. The superior solubility of OHAS is comprehended to be due to weak interactions between OH anions and phosphonium cations, and hence OH anions interact effectively with lignin. Epoxidation of SL was achieved by simply adding epichlorohydrin to [P4444]OH aq. dissolving SL. Films of epoxidized SL were prepared by thermal curing with the aid of a crosslinking agent, and the films were found to possess high thermal stability of >250 °C and excellent ductility. The thermal and mechanical properties were controllable by the concentration of [P4444]Cl as an additive.


Asunto(s)
Resinas Epoxi/química , Lignina/química , Compuestos Organofosforados/química , Agua/química , Estabilidad de Medicamentos , Elasticidad , Solubilidad , Soluciones , Temperatura , Viscosidad
7.
Chem Commun (Camb) ; 54(4): 409-412, 2018 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-29251305

RESUMEN

Fluorophilic ionic liquids (ILs) showing enhanced compatibility with poly(tetrafluoroethylene) (PTFE) have been newly synthesised. The as-designed ILs contributed both to the dissolution of PTFE oligomers and to the preparation of composites with PTFE with no fear of bleed-out of the ILs.

8.
Membranes (Basel) ; 8(4)2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30563155

RESUMEN

Solid polymer electrolytes, in the form of membranes, offering high chemical and mechanical stability, while maintaining good ionic conductivity, are envisaged as a possible solution to improve performances and safety in different lithium cell configurations. In this work, we designed and prepared systems formed using innovative nanocomposite polymer membranes, based on high molecular weight poly(ethylene oxide) (PEO) and silica nanopowders, produced by the electrospinning technique. These membranes were subsequently gelled with solutions based on aprotic ionic liquid, carbonate solvents, and lithium salt. The addition of polysulfide species to the electrolyte solution was also considered, in view of potential applications in lithium-sulfur cells. The morphology of the electrospun pristine membranes was evaluated using scanning electron microscopy. Stability and thermal properties of pristine and gelled systems were investigated uisng differential scanning calorimetry and thermal gravimetric analysis. Electrochemical impedance spectroscopy was used to determine the conductivity of both swelling solutions and gelled membranes, allowing insight into the ion transport mechanism within the proposed composite electrolytes.

9.
ChemSusChem ; 10(11): 2496-2504, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28407378

RESUMEN

Here, two ionic liquids, N-ethoxyethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide (M1,2O2 TFSI) and N-ethoxyethyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide (P1,2O2 TFSI) were synthesized and compared. Fundamental relevant properties, such as thermal and electrochemical stability, density, and ionic conductivity were analyzed to evaluate the effects caused by the presence of the ether bond in the side chain and/or in the organic cation ring. Upon lithium salt addition, two electrolytes suitable for lithium batteries applications were found. Higher conducting properties of the piperidinium-based electrolyte resulted in enhanced cycling performances when tested with LiFePO4 (LFP) cathode in lithium cells. When mixing the P1,2O2 TFSI/LiTFSI electrolyte with a tailored alkyl carbonate mixture, the cycling performance of both Li and Li-ion cells greatly improved, with prolonged cyclability delivering very stable capacity values, as high as the theoretical one in the case of Li/LFP cell configurations.


Asunto(s)
Suministros de Energía Eléctrica , Líquidos Iónicos/química , Litio/química , Electrólitos/química , Éter , Morfolinas/química , Piperidinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA