RESUMEN
BACKGROUND: Reduced red blood cell deformability (RBCD) is associated with diabetic vascular complications, but early pathophysiological RBC changes and predictive demographic and clinical factors in populations with diabetes are unclear. An understanding of early diabetes-specific RBC changes associated with impaired RBCD is essential in investigating mechanisms that predispose to diabetic vascular complications. METHODS: We conducted an outpatient cross-sectional study of participants in a well-controlled diabetes cohort (N81) and nondiabetic controls (N78) at the National Institutes of Health. First, between-group differences in RBCD measures were assessed with shear stress-gradient ektacytometry. Differences in structural RBC parameters were assessed using osmotic gradient ektacytometry and NaCl osmotic fragility. Functional RBC changes were assessed using hemoglobin-oxygen dissociation: p50. RESULTS: All shear-stress gradient RBCD measures were significantly altered in the diabetes cohort vs. nondiabetic controls, even after adjustment for confounding covariates (p < 0.001). Adjusted for diabetes-status and demographic factors, significant predictors of reduced RBCD included older age, Black race, male gender, hyperglycemia, and vascular complications (all p < 0.05). Reduced RBCD was also associated with aberrant osmotic-gradient parameters, with a left-shift on osmotic gradient profile indicative of dehydrated RBCs in diabetes. A structure-function relationship was observed with reduced RBCD associated with reduced osmotic fragility (P < 0.001) and increased hemoglobin-oxygen dissociation (P < 0.01). CONCLUSIONS: Findings suggest impaired RBCD incurs similar demographic and clinical risk factors as diabetic vascular disease, with early pathophysiological RBC changes indicative of disordered RBC hydration in diabetes. Findings provide strong evidence for disordered oxygen release as a functional consequence of reduced RBCD. CLINICAL TRIAL NUMBER: NCT00071526.
Asunto(s)
Deformación Eritrocítica , Eritrocitos , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Transversales , Eritrocitos/metabolismo , Anciano , Estudios de Casos y Controles , Adulto , Diabetes Mellitus/sangre , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/fisiopatología , Factores de Riesgo , Fragilidad Osmótica , Angiopatías Diabéticas/sangre , Angiopatías Diabéticas/diagnóstico , Angiopatías Diabéticas/fisiopatologíaRESUMEN
BACKGROUND: Reduced plasma vitamin C (vitC) concentrations in human immunodeficiency virus (HIV) may result from abnormal urinary excretion: a renal leak. VitC renal leak indicates underlying nutritional dysregulation independent of diet. We hypothesized that increased renal leak prevalence in HIV would be associated with deficient vitC concentrations. METHODS: We conducted an outpatient cross-sectional study of 96 women (40 HIV [PWH] and 56 without HIV [PWOH]) at the National Institutes of Health and Georgetown University. Renal leak was defined as abnormal urinary vitC excretion at fasting plasma concentrations <43.2µM, 2 SDs below vitC renal threshold in healthy women. To determine the primary outcome of renal leak prevalence, matched urine and plasma samples were collected the morning after overnight fast. Secondary outcomes assessed group differences in mean plasma vitC concentrations and prevalence of vitC deficiency. Exploratory outcomes assessed clinical parameters associated with renal leak. VitC was measured by high-performance liquid chromatography with coulometric electrochemical detection. RESULTS: PWH had significantly higher renal leak prevalence (73%vs14%; OR (odds ratio):16; P<.001), lower mean plasma vitC concentrations (14µMvs50µM; P<.001), and higher prevalence of vitC deficiency (43%vs7%; OR:10; P<.001) compared with PWOH, unchanged by adjustments for confounding factors. Significant predictors of renal leak included antiretroviral therapy (ART), Black race, older age, and metabolic comorbidities but not viral load or CD4 count. When compared with other chronic disease cohorts, PWH had the highest prevalence of renal leak and vitC deficiency (P<.001). CONCLUSIONS: High prevalence of vitC renal leak in HIV was associated with vitC deficiency, ART use, and race/ethnicity differences.
Asunto(s)
Deficiencia de Ácido Ascórbico , Infecciones por VIH , Femenino , Humanos , Ácido Ascórbico/metabolismo , Ácido Ascórbico/uso terapéutico , Estudios Transversales , Deficiencia de Ácido Ascórbico/complicaciones , Deficiencia de Ácido Ascórbico/metabolismo , VIH , Comorbilidad , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiologíaRESUMEN
BACKGROUND: Reduced plasma vitamin C concentrations in chronic diseases may result from abnormal urinary excretion of vitamin C: a renal leak. We hypothesized that vitamin C renal leak may be associated with disease-mediated renal dysregulation, resulting in aberrant vitamin C renal reabsorption and increased urinary loss. OBJECTIVES: We investigated the prevalence, clinical characteristics, and genomic associations of vitamin C renal leak in Fabry disease, an X-linked lysosomal disease associated with renal tubular dysfunction and low plasma vitamin C concentrations. METHODS: We conducted a non-randomized cross-sectional cohort study of men aged 24-42 y, with Fabry disease (n = 34) and controls without acute or chronic disease (n = 33). To match anticipated plasma vitamin C concentrations, controls were placed on a low-vitamin C diet 3 wk before inpatient admission. To determine the primary outcome of vitamin C renal leak prevalence, subjects were fasted overnight, and matched urine and fasting plasma vitamin C measurements were obtained the following morning. Vitamin C renal leak was defined as presence of urinary vitamin C at plasma concentrations below 38 µM. Exploratory outcomes assessed the association between renal leak and clinical parameters, and genomic associations with renal leak using single nucleotide polymorphisms (SNPs) in the vitamin C transporter SLC23A1. RESULTS: Compared with controls, the Fabry cohort had 16-fold higher odds of renal leak (6% vs. 52%; OR: 16; 95% CI: 3.30, 162; P < 0.001). Renal leak was associated with higher protein creatinine ratio (P < 0.01) and lower hemoglobin (P = 0.002), but not estimated glomerular filtration rate (P = 0.54). Renal leak, but not plasma vitamin C, was associated with a nonsynonymous single nucleotide polymorphism in vitamin C transporter SLC23A1 (OR: 15; 95% CI: 1.6, 777; P = 0.01). CONCLUSIONS: Increased prevalence of renal leak in adult men with Fabry disease may result from dysregulated vitamin C renal physiology and is associated with abnormal clinical outcomes and genomic variation.
Asunto(s)
Enfermedad de Fabry , Adulto , Masculino , Humanos , Enfermedad de Fabry/complicaciones , Enfermedad de Fabry/orina , Ácido Ascórbico , Estudios Transversales , Riñón/metabolismo , Vitaminas , Genómica , Tasa de Filtración GlomerularRESUMEN
Context: Lung squamous cell carcinoma (LUSC) accounts for 30% of non-small-cell lung cancers (NSCLC), and an effective pharmacological treatment for LUSC isn't yet available. The Xihuang Pill is a potent Chinese medicinal preparation widely prescribed for the management of LUSC. Objective: The study intended to use the network-pharmacology method to ascertain the effective active ingredients, targets of action, and cellular-signal transduction involved in the prevention and treatment of LUSC when using the Xihuang Pill and to identify the mechanism of action of the pills against LUSC, to provide a more adequate scientific basis for subsequent studies. Design: The research team performed a genetic study. Setting: The study took place at Shanghai. Outcome Measures: The research team: (1) created the feature sets, for both the LUSC and normal features, using the Cancer Genome Atlas' (TCGA's) LUSC dataset; (2) performed a weighted correlation network analysis (WGCNA) of the differentially expressed genes (DEGs) using the R package WGCNA; (3) searched for the chemical components of the Xihuang Pill using the Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP) and the Herb Group Identification Platform, and (4) selected the novel the Matthews correlation coefficient (MCC) algorithm to screen the hub genes. Results: The study found 8713 DEGs between the LUSC and normal groups. The top ten, important, downregulated genes included: (1) advanced glycosylation end product (AGER), (2) chitinase, acidic pseudogene 2 (CHIAP2), (3) CD300 molecule like family member G (CD300LG), (4) solute carrier family 6 member 4 (SLC6A4), (5) carboxypeptidase B2 (CPB2), (6) claudin 18 (CLDN18), (7) gamma-glutamyltransferase light chain 1 (GGTLC1), (8) gastrokine 2 (GKN2), (9) progastricsin (PGC), and (10) pulmonary surfactant-associated protein C (SFTPC). The top 10 upregulated genes included: (1) cancer susceptibility 9 (CASC9), (2) homeobox C13 (HOXC13), (3) keratin 6a (KRT6A), (4) desmoglein 3 (DSG3), (5) keratin 16 (KRT16), (6) forkhead box E1 (FOXE1), (7) preferentially expressed antigen in melanoma (PRAME), (8) calmodulin-like protein 3 (CALML3), (9) KRT68, and (10) aldo-keto reductase family 1 member B10 (AKR1B10). The study found 41 active ingredients and 843 targets for the Xihuang Pill. The PPI network included 10 hub genes, including cyclin dependent kinase 1 (CDK1), cyclin B1 (CCNB1), cyclin B2 (CCNB2), polo-like kinase 1 (PLK1), aurora kinase B (AURKB), baculoviral IAP repeat containing 5 (BIRC5), cyclin A2 (CCNA2), aurora kinase A (AURKA), centrosome-associated protein E (CENPE), and threonine tyrosine kinase (TTK), which were the principal target genes at the core of the gene-pathway network for the drug compound to central-target relationship. The enrichment analyses used the overlapping genes and the 10 hub genes and found 390 biological processes (BPs), 25 molecular functions (MFs), 43 cellular components (CCs), and 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The main enrichment occurred in the regulation of protein serine-threonine kinase activity, mitotic nuclear division, progesterone-mediated oocyte maturation, and the cell cycle. Conclusions: The study found the targets and relevant pathways of the hub genes of Xihuang Pill using biological analysis and molecular docking and demonstrated the interactions of critical chemical compounds with the hub's targeted genes were. More research is necessary to further determine whether the Xihuang Pill can improve LUSC patients' survival rate by regulation of those genes.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Farmacología en Red , Simulación del Acoplamiento Molecular , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , China , Pulmón , Claudinas , Antígenos de Neoplasias , Proteínas de Transporte de Serotonina en la Membrana PlasmáticaRESUMEN
Decreased erythrocyte deformability, as measured by ektacytometry, may be associated with disease severity in sickle cell anemia (SCA). Heterogeneous populations of rigid and deformable cells in SCA blood result in distortions of diffraction pattern measurements that correlate with the concentration of hemoglobin S (HbS) and the percentage of irreversibly sickled cells. We hypothesize that red cell heterogeneity, as well as deformability, will also be influenced by the concentration of alternative hemoglobins such as fetal hemoglobin (HbF) and the adult variant, HbA2. To test this hypothesis, we investigate the relationship between diffraction pattern distortion, osmotic gradient ektacytometry parameters, and the hemoglobin composition of SCA blood. We observe a correlation between the extent of diffraction pattern distortions and percentage of HbF and HbA2. Osmotic gradient ektacytometry data indicate that minimum elongation in the hypotonic region is positively correlated with HbF, as is the osmolality at which it occurs. The osmolality at both minimum and maximum elongation is inversely correlated with HbS and HbA2. These data suggest that HbF may effectively improve surface-to-volume ratio and osmotic fragility in SCA erythrocytes. HbA2 may be relatively ineffective in improving these characteristics or cellular hydration at the levels found in this patient cohort.
Asunto(s)
Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/diagnóstico , Deformación Eritrocítica , Hemoglobina Fetal , Hemoglobina Falciforme , Adulto , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Antidrepanocíticos/uso terapéutico , Recuento de Células Sanguíneas , Transfusión Sanguínea , Índices de Eritrocitos , Femenino , Hemoglobina Falciforme/genética , Humanos , Hidroxiurea/uso terapéutico , Masculino , Persona de Mediana Edad , Fragilidad Osmótica , Adulto JovenRESUMEN
BACKGROUND/AIMS: SMAD7 is a key inhibitor of transforming growth factor ß (TGFß) receptor signaling, which regulates the alteration of cancer cell invasiveness through epithelial-mesenchymal cell conversion. Carboplatin is a commonly used drug in the chemotherapy for non-small cell lung cancer (NSCLC). Nevertheless, the molecular mechanisms underlying its suppressive effects on the NSCLC cell invasion are not completely understood. In the current study, we addressed this question by analyzing the effects of Carboplatin on microRNA-regulated SMAD7. METHODS: We used Carboplatin to treat NSCLC cell lines. We performed bioinformatics analyses on the binding of microRNA-21 (miR-21) to the 3'-UTR of SMAD7 mRNA, and verified the biological effects of this binding using promoter luciferase reporter assay. The effects of Carboplatin or miR-21-modification on NSCLC cell invasion were evaluated in either a transwell cell invasion assay, or a scratch wound healing assay. RESULTS: We found that Carboplatin inhibited the NSCLC cell invasion, in either a transwell cell invasion assay, or a scratch wound healing assay. Moreover, Carboplatin increased the levels of SMAD7 protein, but not mRNA, in NSCLC cells, suggesting presence of post-transcriptional control of SMAD7 by Carboplatin. Furthermore, expression of miR-21 was found to be inhibited by Carboplatin, and bioinformatics analyses showed that miR-21 targeted the 3'-UTR of SMAD7 mRNA to inhibit its translation, which was confirmed by luciferase reporter assay. CONCLUSION: Carboplatin may upregulate SMAD7 through suppression of miR-21 to inhibit TGFß receptor signaling mediated NSCLC cell invasion.
Asunto(s)
Antineoplásicos/farmacología , Carboplatino/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Proteína smad7/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Amphotericin B (Ampho B) isa fungicidal drug that causes cell wall injury. Pharmacological ascorbate induces the extracellular prooxidants, which might enter the Ampho B-induced cell wall porosity and act synergistically.W e tested low-dose Ampho B with a short course of pharmacological ascorbate using a mouse model of sepsis preconditioned with an injection of Candida albicans 6 h prior to cecal ligation and puncture (CLP). In this model, candidemia reappeared as early as 6 h after CLP with a predictably high mortality rate. This characteristic mimics sepsis in the phase of immunosuppression inpatients. Using the model, at 12- and 18-h post-CLP, we administered isotonic (pH neutralized) pharmacological ascorbate intravenously with low-dose Ampho B or sodium deoxycholate, vehicle-controlled, administered IP. The survival rate of low-dose Ampho B plus ascorbate was 53%, compared with < 11% for low-dose Ampho B or high-dose Ampho B alone. In addition, a beneficial effect was demonstrated in terms of kidney damage,liver injury, spleen histopathology, and serum markers at 24 h after CLP. Kidney injury was less severe in low-dose Ampho B plus ascorbate combination therapy due to less severe sepsis. Moreover, ascorbate enhanced the effectiveness of phagocytosis against C. albicans in human phagocytic cells. Taken together, the data indicate that the new mouse model simulates sepsis-induced immunosuppression and that the combination of pharmacological ascorbate with an antifungal drug is a potentially effective treatment that may reduce nephrotoxicity, and perhaps also increase fungicidal activity in patients with systemic candidiasis caused by Candida albicans.
Asunto(s)
Anfotericina B/farmacología , Ácido Ascórbico/farmacología , Candidemia/tratamiento farmacológico , Riñón/efectos de los fármacos , Sepsis/tratamiento farmacológico , Anfotericina B/administración & dosificación , Animales , Ácido Ascórbico/administración & dosificación , Candidemia/complicaciones , Modelos Animales de Enfermedad , Combinación de Medicamentos , Hígado/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Sepsis/etiología , Bazo/efectos de los fármacosRESUMEN
This paper presents a novel method of human action recognition, which is based on the reconstructed phase space. Firstly, the human body is divided into 15 key points, whose trajectory represents the human body behavior, and the modified particle filter is used to track these key points for self-occlusion. Secondly, we reconstruct the phase spaces for extracting more useful information from human action trajectories. Finally, we apply the semisupervised probability model and Bayes classified method for classification. Experiments are performed on the Weizmann, KTH, UCF sports, and our action dataset to test and evaluate the proposed method. The compare experiment results showed that the proposed method can achieve was more effective than compare methods.
Asunto(s)
Algoritmos , Modelos Estadísticos , Movimiento , Reconocimiento de Normas Patrones Automatizadas/métodos , Bases de Datos Factuales , HumanosRESUMEN
Human complex action recognition is an important research area of the action recognition. Among various obstacles to human complex action recognition, one of the most challenging is to deal with self-occlusion, where one body part occludes another one. This paper presents a new method of human complex action recognition, which is based on optical flow and correlated topic model (CTM). Firstly, the Markov random field was used to represent the occlusion relationship between human body parts in terms of an occlusion state variable. Secondly, the structure from motion (SFM) is used for reconstructing the missing data of point trajectories. Then, we can extract the key frame based on motion feature from optical flow and the ratios of the width and height are extracted by the human silhouette. Finally, we use the topic model of correlated topic model (CTM) to classify action. Experiments were performed on the KTH, Weizmann, and UIUC action dataset to test and evaluate the proposed method. The compared experiment results showed that the proposed method was more effective than compared methods.
Asunto(s)
Modelos Neurológicos , Percepción de Movimiento , Flujo Optico , Humanos , Percepción EspacialRESUMEN
The precise and automatic recognition of retinal vessels is of utmost importance in the prevention, diagnosis and assessment of certain eye diseases, yet it brings a nontrivial uncertainty for this challenging detection mission due to the presence of intricate factors, such as uneven and indistinct curvilinear shapes, unpredictable pathological deformations, and non-uniform contrast. Therefore, we propose a unique and practical approach based on a multiple attention-guided fusion mechanism and ensemble learning network (MAFE-Net) for retinal vessel segmentation. In conventional UNet-based models, long-distance dependencies are explicitly modeled, which may cause partial scene information loss. To compensate for the deficiency, various blood vessel features can be extracted from retinal images by using an attention-guided fusion module. In the skip connection part, a unique spatial attention module is applied to remove redundant and irrelevant information; this structure helps to better integrate low-level and high-level features. The final step involves a DropOut layer that removes some neurons randomly to prevent overfitting and improve generalization. Moreover, an ensemble learning framework is designed to detect retinal vessels by combining different deep learning models. To demonstrate the effectiveness of the proposed model, experimental results were verified in public datasets STARE, DRIVE, and CHASEDB1, which achieved F1 scores of 0.842, 0.825, and 0.814, and Accuracy values of 0.975, 0.969, and 0.975, respectively. Compared with eight state-of-the-art models, the designed model produces satisfactory results both visually and quantitatively.
RESUMEN
BACKGROUND: Numerous studies have demonstrated that brain metastases patients may benefit from intracranial radiotherapy combined with immune checkpoint inhibitors (ICIs). However, it is unclear whether this treatment is effective for patients with small cell lung cancer brain metastases (SCLC-BMs). METHODS: We conducted a retrospective study by analyzing medical records of patients with SCLC-BMs from January 1, 2017 to June 1, 2022. Data related to median overall survival (mOS), median progression-free survival (mPFS), and intracranial progression-free survival (iPFS) were analyzed. RESULTS: A total of 109 patients were enrolled, of which 60 received WBRT and 49 received WBRT-ICI. Compared to the WBRT alone cohort, the WBRT-ICI cohort showed longer mOS (20.4 months vs. 29.3 months, p = 0.021), mPFS (7.9 months vs. 15.1 months, p < 0.001), and iPFS (8.3 months vs. 16.5 months, p < 0.001). Furthermore, WBRT-ICI cohort had a better response rate for both BMs. (p = 0.035) and extracranial diseases (p < 0.001) compared to those receiving WBRT alone. Notably, the use of WBRT before ICI was associated with longer mOS compared to the use of WBRT after ICI (23.3 months for the ICI-WBRT group vs. 34.8 months for the WBRT-ICI group, p = 0.020). CONCLUSION: Our results indicated that WBRT combined with immunotherapy improved survival in SCLC-BMs patients compared to WBRT monotherapy. Administering WBRT prior to ICI treatment is associated with improved survival outcomes compared to WBRT following ICI treatment, for patients with SCLC-BMs. These findings highlight the significance of conducting further prospective researches on combination strategies of intracranial radiotherapy and ICI in SCLC-BMs patients.
Asunto(s)
Neoplasias Encefálicas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias Pulmonares/terapia , Estudios Retrospectivos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/radioterapia , Neoplasias Encefálicas/radioterapia , EncéfaloRESUMEN
OBJECTIVE: To evaluate the therapeutic advantage of G-CSF to whole brain radiotherapy (WBRT) in combination with immunotherapy as a first-line treatment for non-small cell lung cancer (NSCLC) brain metastases (BMs). METHODS: In this retrospective study, 117 patients (37 in G-CSF group and 80 in no G-CSF group) who underwent first-line WBRT combined with immunotherapy were enrolled. Their survival, intracranial response, BM-related symptoms and toxicity were evaluated. RESULTS: The overall survival (OS) of patients in G-CSF group was significantly improved compared to patients no G-CSF group (median time: 14.8 vs 10.2 months; HR: 0.61, 95 % CI: 0.38-0.97, p = 0.035). However, there were no significant differences in intracranial responses between the two groups (p > 0.05). The G-CSF group exhibited a significantly higher rate of relief from BM-related symptoms compared to the no G-CSF group (91.7 % vs 59.5 %, p = 0.037). Cox proportional hazards regression analyses indicated that after-treatment ALC > 0.9 × 10^9/L (HR 0.57, 95 % CI 0.32-0.99, p = 0.046) and Hb > 110 g/dL (HR 0.41, 95 % CI 0.24-0.71, p = 0.001) were significant potential factors associated with extended OS. The addition of G-CSF was well tolerated and effectively reduced the incidence of neutropenia (0 % vs 5.0 %, p = 0.17). CONCLUSION: Integrating G-CSF with WBRT and immunotherapy as a first-line treatment for NSCLC-BMs has exhibited significant efficacy and favorable tolerability.
Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamiento farmacológico , Estudios Retrospectivos , Factor Estimulante de Colonias de Granulocitos , Resultado del Tratamiento , Irradiación Craneana , Pronóstico , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/tratamiento farmacológico , Encéfalo/patología , InmunoterapiaRESUMEN
In the context of cancer expansion, epithelial-mesenchymal transition (EMT) plays an essential role in driving invasion and metastasis potential of cancer cells. Tumor-associated macrophages (TAMs)-derived factors involved in the initiation and progression of EMT. We assess the role of M2 macrophage in suppressing lung tumors of a natural compound (-)-Guaiol by using macrophage depleted model. Bone marrow-derived monocytes (BMDMs) were extracted and induced to M2-like phenotype in vitro. The co-culture of M2 macrophage and lung cancer cells was established to observe that inhibition of lung tumor growth by (-)-Guaiol requires presence of macrophages. This suppressed effect of (-)-Guaiol was alleviated when mice macrophage was depleted. The expression of M2-like macrophages was strongly reduced by (-)-Guaiol treated mice, but not the changes of M1-like macrophages. In vitro studies, we demonstrated that (-)-Guaiol suppressed M2 polarization of BMDMs, as well as migration, invasion, and EMT of lung cancer cells in co-culture. M2 macrophage-derived interleukin 10 (IL-10) was investigated as a critical signaling molecule between M2 macrophage and lung cancer cells. We have also verified that the mechanism of (-)-Guaiol inhibiting the EMT process of lung cancer is related to the activation of IL-10-mediated signal transducer and activator of transcription 3 (STAT3). These results suggested that the suppressive effect role of (-)-Guaiol in M2 macrophage promoting EMT of lung cancer, which was associated with inhibition of IL-10 mediated STAT3 signaling pathway.
RESUMEN
Although vitamin C (ascorbate) is present in whole blood, measurements in red blood cells (RBCs) are problematic because of interference, instability, limited sensitivity, and sample volume requirements. We describe a new technique using HPLC with coulometric electrochemical detection for ascorbate measurement in RBCs of humans, wild-type mice, and mice unable to synthesize ascorbate. Exogenously added ascorbate was fully recovered even when endogenous RBC ascorbate was below the detection threshold (25 nM). Twenty microliters of whole blood or 10 µl of packed RBCs was sufficient for assay. RBC ascorbate was stable for 24h from whole-blood samples at 4°C. Processed, stored samples were stable for >1 month at -80°C. Unlike other tissues, ascorbate concentrations in human and mouse RBCs were linear in relation to plasma concentrations (R=0.8 and 0.9, respectively). In healthy humans, RBC ascorbate concentrations were 9-57 µM, corresponding to ascorbate plasma concentrations of 15-90 µM. Mouse data were similar. In human blood stored as if for transfusion, initial RBC ascorbate concentrations varied approximately sevenfold and decreased 50% after 6 weeks of storage under clinical conditions. With this assay, it becomes possible for the first time to characterize ascorbate function in relation to endogenous concentrations in RBCs.
Asunto(s)
Ácido Ascórbico/análisis , Cromatografía Líquida de Alta Presión , Eritrocitos/química , Animales , Ácido Ascórbico/sangre , Conservación de la Sangre , Técnicas Electroquímicas , Humanos , Ratones , Ratones Endogámicos C57BLRESUMEN
In tissue engineering research, there has recently been considerable interest in using electrospun biomimetic nanofibers of hybrids, in particular, from natural and synthetic polymers for engineering different tissues. However, phase separation between a pair of much dissimilar polymers might give rise to detrimental influences on both the electrospinning process and the resultant fiber performance. A representative natural-synthetic hybrid of gelatin (GT) and polycaprolactone (PCL) (50:50) was employed to study the phase separation behavior in electrospinning of the GT/PCL composite fibers. Using trifluoroethanol (TFE) as the cosolvent of the two polymers, observation of visible sedimentation and flocculation from dynamic light scattering analysis of the GT/PCL/TFE mixture both showed that phase separation does occur in just a few hours. This consequently led to gradually deteriorated fiber morphologies (e.g., splash, fiber bonding, and varied fiber size) over time during electrospinning GT/PCL. Quantitative analysis also indicated that the ratio of GT to PCL in the resultant GT/PCL fibers was altered over time. To address the phase separation related issues, a tiny amount (<0.3%) of acetic acid was introduced to improve the miscibility, which enabled the originally turbid solution to become clear immediately and to be single-phase stable for more than 1 week. Nanofibers thus obtained also appeared to be thinner, smooth, and homogeneous with enhanced performance in wettability and mechanical properties. Given the versatility and widely uses of the electrospun GT/PCL and other similar natural-synthetic hybrid systems in constructing tissue-engineered scaffolds, this work may offer a facile and effective approach to achieve finer and compositionally homogeneous hybrid nanofibers for effective applications.
Asunto(s)
Ácido Acético/metabolismo , Gelatina/química , Nanofibras/química , Poliésteres/química , Rastreo Diferencial de Calorimetría/métodos , Fluoresceína-5-Isotiocianato/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Trifluoroetanol/metabolismo , Difracción de Rayos X/métodosRESUMEN
BACKGROUND: Diabetes is associated with low plasma vitamin C concentrations. OBJECTIVES: We investigated the contribution of dysregulated vitamin C renal physiology, its prevalence, and associated clinical characteristics. METHODS: An essential prerequisite was determination of normal vitamin C renal threshold, the plasma concentration at which vitamin C first appears in urine. Using data from 17 healthy participants who underwent vitamin C depletion-repletion studies with a vitamin C dose range of 15-1250 mg daily, renal threshold was estimated using physiology-based pharmacokinetics modeling. Applying renal threshold 95% CIs, we estimated the minimal elimination threshold, the plasma concentration below which no vitamin C was expected in urine of healthy people. Renal leak was defined as abnormal presence of vitamin C in urine with plasma concentrations below the minimal elimination threshold. Criteria were tested in a cross-sectional cohort study of individuals with diabetes (82) and nondiabetic controls (80) using matched plasma and urine samples. RESULTS: Vitamin C renal thresholds in healthy men and women were [mean (SD)] 48.5 (5.2) µM and 58.3 (7.5) µM, respectively. Compared with nondiabetic controls, participants with diabetes had significantly higher prevalence of vitamin C renal leak (9% compared with 33%; OR: 5.07; 95% CI: 1.97, 14.83; P < 0.001) and 30% lower mean plasma vitamin C concentrations (53.1 µM compared with 40.9 µM, P < 0.001). Fasting plasma glucose, glycosylated hemoglobin A1c, BMI, micro/macrovascular complications, and protein/creatinine ratio were predictive of vitamin C renal leak. CONCLUSIONS: Increased prevalence of vitamin C renal leak in diabetes is associated with reduced plasma vitamin C concentrations. Glycemic control, microvascular complications, obesity, and proteinuria are predictive of renal leak.
Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Nefropatías Diabéticas , Adulto , Ácido Ascórbico , Estudios Transversales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Nefropatías Diabéticas/etiología , Femenino , Hemoglobina Glucada/análisis , Humanos , Masculino , Persona de Mediana Edad , PrevalenciaRESUMEN
Background: The novel coronavirus disease 2019 (COVID-19) has been spread widely in the world, causing a huge threat to the living environment of people. Objective: Under CT imaging, the structure features of COVID-19 lesions are complicated and varied greatly in different cases. To accurately locate COVID-19 lesions and assist doctors to make the best diagnosis and treatment plan, a deep-supervised ensemble learning network is presented for COVID-19 lesion segmentation in CT images. Methods: Since a large number of COVID-19 CT images and the corresponding lesion annotations are difficult to obtain, a transfer learning strategy is employed to make up for the shortcoming and alleviate the overfitting problem. Based on the reality that traditional single deep learning framework is difficult to extract complicated and varied COVID-19 lesion features effectively that may cause some lesions to be undetected. To overcome the problem, a deep-supervised ensemble learning network is presented to combine with local and global features for COVID-19 lesion segmentation. Results: The performance of the proposed method was validated in experiments with a publicly available dataset. Compared with manual annotations, the proposed method acquired a high intersection over union (IoU) of 0.7279 and a low Hausdorff distance (H) of 92.4604. Conclusion: A deep-supervised ensemble learning network was presented for coronavirus pneumonia lesion segmentation in CT images. The effectiveness of the proposed method was verified by visual inspection and quantitative evaluation. Experimental results indicated that the proposed method has a good performance in COVID-19 lesion segmentation.
RESUMEN
BACKGROUND: Type XI collagen (COL11A1) was reported to associate with malignancy in several cancer types, whereas its role in lung cancer is not fully understood. Therefore, the present study aimed to explore the expression level and biological role of COL11A1 in lung cancer cells. METHODS: Gene Expression Omnibus (GEO) database containing 6 lung cancer tissues and normal lung tissues was used to identify potential aberrantly expressed genes. The expression of COL11A1, apoptosis related genes, cell cycle related genes and migration associated genes at the protein level were evaluated by western blot and at the mRNA level was determined by real-time PCR in lung cancer cell lines. Furthermore, the expression of COL11A1 was silenced by siRNA, and cell viability was detected by Cell counting kit-8 (CCK-8) assay. Moreover, cell apoptosis and cell cycle were determined by flow cytometry. In addition, transwell and wound-healing assay were applied to determine cell migration ability. RESULTS: GEO analysis suggests that COL11A1 was highly expressed in patients with lung cancer, which was consistent with the results in lung cancer cell lines. COL11A1 knockdown in lung cancer cells significantly lowered the colony formation ability, augmented cell apoptosis rate and elevated the expression of cleaved caspase-3, cleaved caspase-9, Bax, P21 and the expression of Bcl-2, CyclinD1, CDK2 and CDK-4 was significantly downregulated (all p < 0.05). Moreover, post-COL11A1 knockdown, the cell wound-healing and migration ability was significantly impaired, which also supported by the upregulation of E-Cadherin and downregulation of N-Cadherin, Vimentin and Snail (all p < 0.05). Furthermore, we also found that COL11A1 knockdown decreased the expression of p-AKT, p-PI3K and p-ERK. CONCLUSION: The present study revealed that COL11A1 may contribute to the malignancy and involve in the pathogenesis of lung cancer.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Colágeno Tipo XI/genética , Humanos , Neoplasias Pulmonares/genéticaRESUMEN
BACKGROUNDWe hypothesized that obesity-associated hepatosteatosis is a pathophysiological chemical depot for fat-soluble vitamins and altered normal physiology. Using α-tocopherol (vitamin E) as a model vitamin, pharmacokinetics and kinetics principles were used to determine whether excess liver fat sequestered α-tocopherol in women with obesity-associated hepatosteatosis versus healthy controls.METHODSCustom-synthesized deuterated α-tocopherols (d3- and d6-α-tocopherols) were administered to hospitalized healthy women and women with hepatosteatosis under investigational new drug guidelines. Fluorescently labeled α-tocopherol was custom-synthesized for cell studies.RESULTSIn healthy subjects, 85% of intravenous d6-α-tocopherol disappeared from the circulation within 20 minutes but reappeared within minutes and peaked at 3-4 hours; d3- and d6-α-tocopherols localized to lipoproteins. Lipoprotein redistribution occurred only in vivo within 1 hour, indicating a key role of the liver in uptake and re-release. Compared with healthy subjects who received 2 mg, subjects with hepatosteatosis had similar d6-α-tocopherol entry rates into liver but reduced initial release rates (P < 0.001). Similarly, pharmacokinetics parameters were reduced in hepatosteatosis subjects, indicating reduced hepatic d6-α-tocopherol output. Reductions in kinetics and pharmacokinetics parameters in hepatosteatosis subjects who received 2 mg were echoed by similar reductions in healthy subjects when comparing 5- and 2-mg doses. In vitro, fluorescent-labeled α-tocopherol localized to lipid in fat-loaded hepatocytes, indicating sequestration.CONCLUSIONSThe unique role of the liver in vitamin E physiology is dysregulated by excess liver fat. Obesity-associated hepatosteatosis may produce unrecognized hepatic vitamin E sequestration, which might subsequently drive liver disease. Our findings raise the possibility that hepatosteatosis may similarly alter hepatic physiology of other fat-soluble vitamins.TRIAL REGISTRATIONClinicalTrials.gov, NCT00862433.FUNDINGNational Institute of Diabetes and Digestive and Kidney Diseases and NIH grants DK053213-13, DK067494, and DK081761.
Asunto(s)
Hígado Graso/tratamiento farmacológico , Vitamina E/administración & dosificación , Vitamina E/farmacocinética , Adolescente , Adulto , Línea Celular , Femenino , Células Hep G2 , Humanos , Cinética , Lípidos , Lipoproteínas , Hígado/metabolismo , Obesidad , Adulto Joven , alfa-Tocoferol/administración & dosificación , alfa-Tocoferol/farmacocinéticaRESUMEN
BACKGROUND: Non-small cell lung cancer (NSCLC) remains the first leading cause of death in malignancies worldwide. Despite the early screening of NSCLC by low-dose spiral computed tomography (CT) in high-risk individuals caused a 20% reduction in the mortality, there still exists imperative needs for the identification of novel biomarkers for the diagnosis and treatment of lung cancer. METHODS: mRNA microarray datasets GSE19188, GSE33532, and GSE44077 were searched, and the differentially expressed genes (DEGs) were obtained using GEO2R. Functional and pathway enrichment analyses were performed for the DEGs using DAVID database. Protein-protein interaction (PPI) network was plotted with STRING and visualized by Cytoscape. Module analysis of the PPI network was done through MCODE. The overall survival (OS) analysis of genes from MCODE was performed with the Kaplan Meier-plotter. RESULTS: A total of 221 DEGs were obtained, which were mainly enriched in the terms related to cell division, cell proliferation, and signal transduction. A PPI network was constructed, consisting of 221 nodes and 739 edges. A significant module including 27 genes was identified in the PPI network. Elevated expression of these genes was associated with poor OS of NSCLC patients, including UBE2T, UNF2, CDKN3, ANLN, CCNB2, and CKAP2L. The enriched functions and pathways included protein binding, ATP binding, cell cycle, and p53 signaling pathway. CONCLUSIONS: The DEGs in NSCLC have the potential to become useful targets for the diagnosis and treatment of NSCLC.