RESUMEN
As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing and/or sequencing capacity, which can also introduce biases1-3. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing4,5. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We developed and deployed improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detected emerging variants of concern up to 14 days earlier in wastewater samples, and identified multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.
Asunto(s)
COVID-19 , SARS-CoV-2 , Monitoreo Epidemiológico Basado en Aguas Residuales , Aguas Residuales , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Humanos , ARN Viral/análisis , ARN Viral/genética , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Análisis de Secuencia de ARN , Aguas Residuales/virologíaRESUMEN
IMPORTANCE: The composition of the human vaginal microbiome has been linked to a variety of medical conditions including yeast infection, bacterial vaginosis, and sexually transmitted infection. The vaginal microbiome is becoming increasingly acknowledged as a key factor in personal health, and it is essential to establish methods to collect and process accurate samples with self-collection techniques to allow large, population-based studies. In this study, we investigate if using AssayAssure Genelock, a nucleic acid preservative, introduces microbial biases in self-collected vaginal samples. To our knowledge, we also contribute some of the first evidence regarding the impacts of multiple swabs taken at one time point. Vaginal samples have relatively low biomass, so the ability to collect multiple swabs from a unique participant at a single time would greatly improve the replicability and data available for future studies. This will hopefully lay the groundwork to gain a more complete and accurate understanding of the vaginal microbiome.
Asunto(s)
Microbiota , Vagina , Femenino , Humanos , Vagina/microbiología , Manejo de Especímenes/métodos , ARN Ribosómico 16SRESUMEN
Despite extensive efforts, extracting information on medication exposure from clinical records remains challenging. To complement this approach, we developed the tandem mass spectrometry (MS/MS) based GNPS Drug Library. This resource integrates MS/MS data for drugs and their metabolites/analogs with controlled vocabularies on exposure sources, pharmacologic classes, therapeutic indications, and mechanisms of action. It enables direct analysis of drug exposure and metabolism from untargeted metabolomics data independent of clinical records. Our library facilitates stratification of individuals in clinical studies based on the empirically detected medications, exemplified by drug-dependent microbiota-derived N-acyl lipid changes in a cohort with human immunodeficiency virus. The GNPS Drug Library holds potential for broader applications in drug discovery and precision medicine.
RESUMEN
Replicability is a well-established challenge in microbiome research with a variety of contributing factors at all stages, from sample collection to code execution. Here, we focus on voided urine sample storage conditions for urogenital microbiome analysis. Using urine samples collected from 10 adult females, we investigated the microbiome preservation efficacy of AssayAssure Genelock (Genelock), compared with no preservative, under different temperature conditions. We varied temperature over 48 h in order to examine the impact of conditions samples may experience with home voided urine collection and shipping to a central biorepository. The following common lab and shipping conditions were investigated: -20°C, ambient temperature, 4°C, freeze-thaw cycle, and heat cycle. At 48 h, all samples were stored at -80°C until processing. After generating 16S rRNA gene amplicon sequencing data using the highly sensitive KatharoSeq protocol, we observed individual variation in both alpha and beta diversity metrics below interhuman differences, corroborating reports of individual microbiome variability in other specimen types. While there was no significant difference in beta diversity when comparing Genelock versus no preservative, we did observe a higher concordance with Genelock samples shipped at colder temperatures (-20°C and 4°C) when compared with the samples shipped at -20°C without preservative. Our results indicate that Genelock does not introduce a significant amount of microbial bias when used on a range of temperatures and is most effective at colder temperatures. IMPORTANCE The urogenital microbiome is an understudied yet important human microbiome niche. Research has been stimulated by the relatively recent discovery that urine is not sterile; urinary tract microbes have been linked to health problems, including urinary infections, incontinence, and cancer. The quality of life and economic impact of UTIs and urgency incontinence alone are enormous, with $3.5 billion and $82.6 billion, respectively, spent in the United States. annually. Given the low biomass of urine, novelty of the field, and limited reproducibility evidence, it is critical to study urine sample storage conditions to optimize scientific rigor. Efficient and reliable preservation methods inform methods for home self-sample collection and shipping, increasing the potential use in larger-scale studies. Here, we examined both buffer and temperature variation effects on 16S rRNA gene amplicon sequencing results from urogenital samples, providing data on the consequences of common storage methods on urogenital microbiome results.
Asunto(s)
Microbiota , Incontinencia Urinaria , Infecciones Urinarias , Adulto , Femenino , Humanos , Estados Unidos , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Calidad de Vida , Microbiota/genética , Toma de Muestras de OrinaRESUMEN
Background: Schools are high-risk settings for SARS-CoV-2 transmission, but necessary for children's educational and social-emotional wellbeing. Previous research suggests that wastewater monitoring can detect SARS-CoV-2 infections in controlled residential settings with high levels of accuracy. However, its effective accuracy, cost, and feasibility in non-residential community settings is unknown. Methods: The objective of this study was to determine the effectiveness and accuracy of community-based passive wastewater and surface (environmental) surveillance to detect SARS-CoV-2 infection in neighborhood schools compared to weekly diagnostic (PCR) testing. We implemented an environmental surveillance system in nine elementary schools with 1700 regularly present staff and students in southern California. The system was validated from November 2020 to March 2021. Findings: In 447 data collection days across the nine sites 89 individuals tested positive for COVID-19, and SARS-CoV-2 was detected in 374 surface samples and 133 wastewater samples. Ninety-three percent of identified cases were associated with an environmental sample (95% CI: 88%-98%); 67% were associated with a positive wastewater sample (95% CI: 57%-77%), and 40% were associated with a positive surface sample (95% CI: 29%-52%). The techniques we utilized allowed for near-complete genomic sequencing of wastewater and surface samples. Interpretation: Passive environmental surveillance can detect the presence of COVID-19 cases in non-residential community school settings with a high degree of accuracy. Funding: County of San Diego, Health and Human Services Agency, National Institutes of Health, National Science Foundation, Centers for Disease Control.
RESUMEN
Background: Schools are high-risk settings for SARS-CoV-2 transmission, but necessary for children's educational and social-emotional wellbeing. Previous research suggests that wastewater monitoring can detect SARS-CoV-2 infections in controlled residential settings with high levels of accuracy. However, its effective accuracy, cost, and feasibility in non-residential community settings is unknown. Methods: The objective of this study was to determine the effectiveness and accuracy of community-based passive wastewater and surface (environmental) surveillance to detect SARS-CoV-2 infection in neighborhood schools compared to weekly diagnostic (PCR) testing. We implemented an environmental surveillance system in nine elementary schools with 1700 regularly present staff and students in southern California. The system was validated from November 2020 - March 2021. Findings: In 447 data collection days across the nine sites 89 individuals tested positive for COVID-19, and SARS-CoV-2 was detected in 374 surface samples and 133 wastewater samples. Ninety-three percent of identified cases were associated with an environmental sample (95% CI: 88% - 98%); 67% were associated with a positive wastewater sample (95% CI: 57% - 77%), and 40% were associated with a positive surface sample (95% CI: 29% - 52%). The techniques we utilized allowed for near-complete genomic sequencing of wastewater and surface samples. Interpretation: Passive environmental surveillance can detect the presence of COVID-19 cases in non-residential community school settings with a high degree of accuracy. Funding: County of San Diego, Health and Human Services Agency, National Institutes of Health, National Science Foundation, Centers for Disease Control.
RESUMEN
As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing/sequencing capacity, which can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We develop and deploy improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater samples, and identify multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.