Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Blood ; 129(13): 1802-1810, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28115365

RESUMEN

Supplementation with nontoxic doses of micronutrient selenium has been shown to alleviate chronic myelogenous leukemia (CML) via the elimination of leukemia stem cells (LSCs) in mice. This treatment provides a new and novel method for eliminating the LSCs that are otherwise not targeted by existing therapies. The antileukemic effect of selenium was dependent on the production of endogenous cyclopentenone prostaglandins (CyPGs), Δ-12 prostaglandin J2 (Δ12-PGJ2), and 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2). Here, we show that these endogenous CyPGs, produced by mice maintained on selenium-supplemented diets, alleviate the symptoms of CML through their ability to activate the nuclear hormone receptor, peroxisome proliferator activated receptor γ (PPARγ). GW9662, a potent PPARγ antagonist, blocked the antileukemic effect of selenium supplementation by significantly reducing CyPGs. This effect was mediated by an increase in 15-prostaglandin dehydrogenase (15-Pgdh) activity, which oxidizes and inactivates Δ12-PGJ2 and 15d-PGJ2 In contrast, treatment with the PPARγ agonist pioglitazone mimicked selenium supplementation. This treatment led to decreased 15-Pgdh activity and increased CyPG levels, which inhibited CML progression. Selenium-dependent activation of PPARγ mediated by endogenous CyPGs decreased Stat5 expression leading to the downregulation of Cited2, a master regulator of LSC quiescence. These studies suggest a potential role for selenium supplementation as an adjuvant therapy in CML.


Asunto(s)
Leucemia/tratamiento farmacológico , PPAR gamma/metabolismo , Prostaglandina D2/análogos & derivados , Selenio/uso terapéutico , Animales , Antineoplásicos , Suplementos Dietéticos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones , PPAR gamma/agonistas , PPAR gamma/antagonistas & inhibidores , Prostaglandina D2/biosíntesis , Prostaglandina D2/fisiología , Selenio/farmacología
2.
Cell Rep ; 42(7): 112794, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459233

RESUMEN

Relapse of acute myeloid leukemia (AML) remains a significant concern due to persistent leukemia-initiating stem cells (LICs) that are typically not targeted by most existing therapies. Using a murine AML model, human AML cell lines, and patient samples, we show that AML LICs are sensitive to endogenous and exogenous cyclopentenone prostaglandin-J (CyPG), Δ12-PGJ2, and 15d-PGJ2, which are increased upon dietary selenium supplementation via the cyclooxygenase-hematopoietic PGD synthase pathway. CyPGs are endogenous ligands for peroxisome proliferator-activated receptor gamma and GPR44 (CRTH2; PTGDR2). Deletion of GPR44 in a mouse model of AML exacerbated the disease suggesting that GPR44 activation mediates selenium-mediated apoptosis of LICs. Transcriptomic analysis of GPR44-/- LICs indicated that GPR44 activation by CyPGs suppressed KRAS-mediated MAPK and PI3K/AKT/mTOR signaling pathways, to enhance apoptosis. Our studies show the role of GPR44, providing mechanistic underpinnings of the chemopreventive and chemotherapeutic properties of selenium and CyPGs in AML.


Asunto(s)
Leucemia Mieloide Aguda , Selenio , Humanos , Ratones , Animales , Fosfatidilinositol 3-Quinasas , Transducción de Señal , Línea Celular
3.
Pharmaceuticals (Basel) ; 13(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138130

RESUMEN

AIM: Anxiety and intolerance to dental local anesthetic injections are common in patients undergoing dental procedures. This work was designed to study cytotoxicity of selected flavors in primary gingival keratinocytes (PGK), to acquire information on their suitability for use in dental lidocaine hydrochloride (LID) injection. We also evaluated the bio-mimetic taste of LID dental injection in the presence of selected flavors and sweetener using an Astree electronic tongue (ETongue). METHODS: The cytotoxicity of chocolate natural and artificial flavor (CTE), raspberry flavor artificial (RAS), cherry flavor (CHR), bitterness suppressor flavor (BSF) and lemon flavor extract (LFE) at various dilutions (0.16-10% v/v) was carried out in PGK using the live cell morphological analysis and MTT cell cytotoxicity assay. Based on the cytotoxicity data, CTE and RAS were added to Xylocaine® (2%) along with 0.09% sodium saccharin and taste was assessed using an ETongue. RESULTS: After three hours of treatment, a dose-dependent cell death was induced by all flavors compared to the untreated control. BSF was found to be more toxic when compared to other flavors. CTE was found to be less toxic. The mean IC50 values of CTE, RAS, CHR, BSF and LFE in PGK were found to be 9.54, 8.43, 2.21, 0.38 and 4.01 mg/mL. Taste analysis with the ETongue showed a clear taste difference between the control and test formulations containing CTE and RAS flavors along with sodium saccharin. CONCLUSION: CTE and RAS flavors in combination with 0.09% sodium saccharin can achieve a significant taste-masking effect in the dental LID injection.

4.
Curr Pharm Des ; 26(15): 1712-1728, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32003663

RESUMEN

Flavonoids are low molecular weight, polyphenolic phytochemicals, obtained from secondary metabolism of various plant compounds. They have a spectrum of pharmacological efficacies, including potential anticancer efficacy. Natural flavonoids are present in fruits, vegetables, grains, bark, roots, stems, flowers, tea and wine. Flavonoids can attenuate or inhibit the initiation, promotion and progression of cancer by modulating various enzymes and receptors in diverse pathways that involve cellular proliferation, differentiation, apoptosis, inflammation, angiogenesis and metastasis. Furthermore, in vitro, flavonoids have been shown to reverse multidrug resistance when used as chemo-adjuvants. Flavonoids (both natural and synthetic analogues) interact with several oncogenic targets through dependent and independent mechanisms to mediate their anticancer efficacy in different types of cancer cells.


Asunto(s)
Flavonoides , Neoplasias , Apoptosis , Flavonoides/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Neovascularización Patológica , Fitoquímicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA