Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1520, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233448

RESUMEN

Nanoparticles have numerous applications and are used frequently in different cooling, heating, treatment of cancer cells and manufacturing processes. The current investigation covers the utilization of tetra hybrid nanofluid (aluminum oxide, iron dioxide, titanium dioxide and copper) for Crossflow model over a vertical disk by considering the shape effects (bricks, cylindrical and platelet) of nanoparticles, electro-magneto-hydrodynamic effect and quadratic thermal radiation. In the current inspection model is first derived given PD-equations and then altered into a system of OD-equations by including similarity variables. The converted ordinary differential equations are solved by using the finite element procedure and the impact of the solution against numerous involved parameters is displayed through tables and graphs. It is observed that tetra-hybrid nanoparticles are recommended better in industrial applications where the highest production of thermal energy. Moreover, an enhancement of thermal production can be achieved utilizing different values of the magnetic parameter, time relaxation number, variable thermal radiation number and magnetic induction number but the opposite trend has been noticed with the effects of radiation number.

2.
Sci Rep ; 14(1): 1096, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212335

RESUMEN

This research explores the 3-D flow characteristics, entropy generation and heat transmission behavior of nanofluids consisting of copper and titanium in water as they flow across a bidirectional apparent, while considering the influence of magneto-hydrodynamics. The thermophysical properties of nanofluids are taken advantage of utilizing the Tiwari and Das demonstrate. The concept of the boundary layer has facilitated the comprehension of the physical ideas derived from it. By applying requisite transformations, the connected intricate sets of partial differential equation have been converted into ordinary differential equation. The modified model is calculated employing the widely recognized technique known as OHAM by using Mathematica program BVPh2.0 Software. For different dimensionless parameters computational and graphical investigations have been performed. It is notice that as fluid parameters change, they exhibit distinct responses in comparison to the temperature, velocity profiles and entropy generation. The results show that velocity profile rise with greater estimates of the magnetic parameter and the rate of entropy formation. Furthermore, thermal profiles become less significant as Eckert and Prandtl numbers increase.

3.
Sci Rep ; 13(1): 15040, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699944

RESUMEN

Transport of heat visualizes a vital role in many industrial developments. Current study is discussing the role of Joule heating, solar thermal radiation, heat generation/absorption, reactions (homogeneous and heterogeneous) with variable thermal conductivity on partially ionized power law material past over a three-dimensional heated stretched surface. The power law model is assumed to have the thermal characteristics of ethylene glycol material. The phenomenon of momentum and energy balance is derived in Cartesian coordinates and developed PD (partial differential)-equations. Swimming pools, solar collectors, food processing, electronic gadgets, cooling systems, magnetic field measurement, computer chips, thermal enhancement, semiconductor characterization, nuclear fusion research and other physical applications are examples of ongoing research. The principle of boundary layer simplified the governing problem. The complex coupled PD (partial differential)-equations have been converted into ordinary differential equations OD (ordinary differential)-equations by using appropriate similarity transformation. The converted boundary value problem is complex and highly nonlinear which does not have the exact solution. The approximate solution is computed numerically via finite element scheme (FES) which is coded in MAPLE 18.0 symbolic package. The convergence of the scheme is established through grid independent survey and the solution is plotted against numerous involved parameters. Thermal performance produced by [Formula: see text]-[Formula: see text]-[Formula: see text]/EG is higher thermal performance produced by [Formula: see text]-[Formula: see text]/EG. Ion slip and Hall forces are responsible for generating Joule heating mechanism that is responsible for reduction of velocity curve and generating shear stresses. Hence, tangential stresses are declined against increasing [Formula: see text] and [Formula: see text].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA