Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nucleic Acids Res ; 49(3): 1619-1630, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33444456

RESUMEN

Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 activity through poorly defined mechanisms. To understand the molecular basis of LIG1 syndrome mutations, we determined high resolution X-ray structures and performed systematic biochemical characterization of LIG1 mutants using steady-state and pre-steady state kinetic approaches. Our results unveil a cooperative network of plastic DNA-LIG1 interactions that connect DNA substrate engagement with productive binding of Mg2+ cofactors for catalysis. LIG1 syndrome mutations destabilize this network, compromising Mg2+ binding affinity, decreasing ligation efficiency, and leading to elevated abortive ligation that may underlie the disease pathology. These findings provide novel insights into the fundamental mechanism by which DNA ligases engage with a nicked DNA substrate, and they suggest that disease pathology of LIG1 syndrome could be modulated by Mg2+ levels.


Asunto(s)
ADN Ligasa (ATP)/química , ADN Ligasa (ATP)/genética , Mutación , Enfermedades de Inmunodeficiencia Primaria/genética , Sitios de Unión , ADN/metabolismo , ADN Ligasa (ATP)/metabolismo , Humanos , Ligandos , Magnesio/química , Modelos Moleculares , Pliegue de Proteína , Síndrome
2.
EMBO J ; 37(14)2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29934293

RESUMEN

The failure of DNA ligases to complete their catalytic reactions generates cytotoxic adenylated DNA strand breaks. The APTX RNA-DNA deadenylase protects genome integrity and corrects abortive DNA ligation arising during ribonucleotide excision repair and base excision DNA repair, and APTX human mutations cause the neurodegenerative disorder ataxia with oculomotor ataxia 1 (AOA1). How APTX senses cognate DNA nicks and is inactivated in AOA1 remains incompletely defined. Here, we report X-ray structures of APTX engaging nicked RNA-DNA substrates that provide direct evidence for a wedge-pivot-cut strategy for 5'-AMP resolution shared with the alternate 5'-AMP processing enzymes POLß and FEN1. Our results uncover a DNA-induced fit mechanism regulating APTX active site loop conformations and assembly of a catalytically competent active center. Further, based on comprehensive biochemical, X-ray and solution NMR results, we define a complex hierarchy for the differential impacts of the AOA1 mutational spectrum on APTX structure and activity. Sixteen AOA1 variants impact APTX protein stability, one mutation directly alters deadenylation reaction chemistry, and a dominant AOA1 variant unexpectedly allosterically modulates APTX active site conformations.


Asunto(s)
Roturas del ADN de Cadena Simple , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Enfermedades Neurodegenerativas/patología , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Proteínas Nucleares/genética , Unión Proteica , Conformación Proteica , Estabilidad Proteica , ARN/química , ARN/metabolismo
3.
Nature ; 506(7486): 111-5, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24362567

RESUMEN

Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA-DNA, and acting in an RNA-DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure-function studies of human APTX-RNA-DNA-AMP-Zn complexes define a mechanism for detecting and reversing adenylation at RNA-DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA-DNA may contribute to neurological disease.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Genoma Humano/genética , Proteínas Nucleares/metabolismo , ARN/metabolismo , Adenosina Monofosfato/metabolismo , Apraxias/genética , Ataxia Telangiectasia/genética , Supervivencia Celular , Ataxia Cerebelosa/congénito , ADN/química , Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Humanos , Hipoalbuminemia/genética , Modelos Moleculares , Mutación/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformación de Ácido Nucleico , Conformación Proteica , Pliegue de Proteína , ARN/química , Ribonucleasa H/metabolismo , Puntos de Control de la Fase S del Ciclo Celular , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Relación Estructura-Actividad , Zinc/metabolismo
4.
Nat Commun ; 15(1): 8730, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39379399

RESUMEN

Finalization of eukaryotic nuclear DNA replication relies on DNA ligase 1 (LIG1) to seal DNA nicks generated during Okazaki Fragment Maturation (OFM). Using a mutational reporter in Saccharomyces cerevisiae, we previously showed that mutation of the high-fidelity magnesium binding site of LIG1Cdc9 strongly increases the rate of single-base insertions. Here we show that this rate is increased across the nuclear genome, that it is synergistically increased by concomitant loss of DNA mismatch repair (MMR), and that the additions occur in highly specific sequence contexts. These discoveries are all consistent with incorporation of an extra base into the nascent lagging DNA strand that can be corrected by MMR following mutagenic ligation by the Cdc9-EEAA variant. There is a strong preference for insertion of either dGTP or dTTP into 3-5 base pair mononucleotide sequences with stringent flanking nucleotide requirements. The results reveal unique LIG1Cdc9-dependent mutational motifs where high fidelity DNA ligation of a subset of OFs is critical for preventing mutagenesis across the genome.


Asunto(s)
ADN Ligasa (ATP) , Reparación de la Incompatibilidad de ADN , Replicación del ADN , ADN de Hongos , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Reparación de la Incompatibilidad de ADN/genética , ADN Ligasa (ATP)/genética , ADN Ligasa (ATP)/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Replicación del ADN/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/genética , ADN/metabolismo , Mutagénesis Insercional , Mutación , ADN Ligasas/metabolismo , ADN Ligasas/genética
5.
J Med Chem ; 65(10): 7231-7245, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35522528

RESUMEN

MAGE proteins are cancer testis antigens (CTAs) that are characterized by highly conserved MAGE homology domains (MHDs) and are increasingly being found to play pivotal roles in promoting aggressive cancer types. MAGE-A4, in particular, increases DNA damage tolerance and chemoresistance in a variety of cancers by stabilizing the E3-ligase RAD18 and promoting trans-lesion synthesis (TLS). Inhibition of the MAGE-A4:RAD18 axis could sensitize cancer cells to chemotherapeutics like platinating agents. We use an mRNA display of thioether cyclized peptides to identify a series of potent and highly selective macrocyclic inhibitors of the MAGE-A4:RAD18 interaction. Co-crystal structure indicates that these inhibitors bind in a pocket that is conserved across MHDs but take advantage of A4-specific residues to achieve high isoform selectivity. Cumulatively, our data represent the first reported inhibitor of the MAGE-A4:RAD18 interaction and establish biochemical tools and structural insights for the future development of MAGE-A4-targeted cellular probes.


Asunto(s)
Antígenos de Neoplasias , Proteínas de Neoplasias , Neoplasias , Antígenos de Neoplasias/química , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Masculino , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Relación Estructura-Actividad , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
J Biol Chem ; 285(48): 37121-7, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-20870714

RESUMEN

Glycosyltransferases (GTs) control the synthesis and structures of glycans. Inactivation and intense allelic variation in members of the GT6 family generate species-specific and individual variations in carbohydrate structures, including histo-blood group oligosaccharides, resulting in anti-glycan antibodies that target glycan-decorated pathogens. GT6 genes are ubiquitous in vertebrates but are otherwise rare, existing in a few bacteria, one protozoan, and cyanophages, suggesting lateral gene transfer. Prokaryotic GT6 genes correspond to one exon of vertebrate genes, yet their translated protein sequences are strikingly similar. Bacterial and phage GT6 genes influence the surface chemistry of bacteria, affecting their interactions, including those with vertebrate hosts.


Asunto(s)
Bacterias/enzimología , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/metabolismo , Transferencia de Gen Horizontal , Glicosiltransferasas/metabolismo , Vertebrados/fisiología , Animales , Bacterias/química , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Evolución Molecular , Glicosiltransferasas/química , Glicosiltransferasas/genética , Humanos , Datos de Secuencia Molecular , Filogenia , Vertebrados/clasificación , Vertebrados/genética
7.
Nat Commun ; 12(1): 482, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33473124

RESUMEN

DNA ligase 1 (LIG1, Cdc9 in yeast) finalizes eukaryotic nuclear DNA replication by sealing Okazaki fragments using DNA end-joining reactions that strongly discriminate against incorrectly paired DNA substrates. Whether intrinsic ligation fidelity contributes to the accuracy of replication of the nuclear genome is unknown. Here, we show that an engineered low-fidelity LIG1Cdc9 variant confers a novel mutator phenotype in yeast typified by the accumulation of single base insertion mutations in homonucleotide runs. The rate at which these additions are generated increases upon concomitant inactivation of DNA mismatch repair, or by inactivation of the Fen1Rad27 Okazaki fragment maturation (OFM) nuclease. Biochemical and structural data establish that LIG1Cdc9 normally avoids erroneous ligation of DNA polymerase slippage products, and this protection is compromised by mutation of a LIG1Cdc9 high-fidelity metal binding site. Collectively, our data indicate that high-fidelity DNA ligation is required to prevent insertion mutations, and that this may be particularly critical following strand displacement synthesis during the completion of OFM.


Asunto(s)
Replicación del ADN/fisiología , ADN de Hongos/metabolismo , ADN/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetiltransferasas/metabolismo , ADN Ligasa (ATP)/metabolismo , ADN Ligasas , Reparación de la Incompatibilidad de ADN/genética , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Proteínas de la Membrana/metabolismo , Mutagénesis , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
J Biol Chem ; 284(37): 25126-34, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19622749

RESUMEN

The myriad functions of complex carbohydrates include modulating interactions between bacteria and their eukaryotic hosts. In humans and other vertebrates, variations in the activity of glycosyltransferases of CAZy family 6 generate antigenic variation between individuals and species that facilitates resistance to pathogens. The well characterized vertebrate glycosyltransferases of this family are multidomain membrane proteins with C-terminal catalytic domains. Genes for proteins homologous with their catalytic domains are found in at least nine species of anaerobic commensal bacteria and a cyanophage. Although the bacterial proteins are strikingly similar in sequence to the catalytic domains of their eukaryotic relatives, a metal-binding Asp-X-Asp sequence, present in a wide array of metal ion-dependent glycosyltransferases, is replaced by Asn-X-Asn. We have cloned and expressed one of these proteins from Bacteroides ovatus, a bacterium that is linked to inflammatory bowel disease. Functional characterization shows it to be a metal-independent glycosyltransferase with a 200-fold preference for UDP-GalNAc as substrate relative to UDP-Gal. It efficiently catalyzes the synthesis of oligosaccharides similar to human blood group A and may participate in the synthesis of the bacterial O-antigen. The kinetics for GalNAc transfer to 2'-fucosyl lactose are characteristic of a sequential mechanism, as observed previously for this family. Mutational studies indicate that despite the lack of a metal cofactor, there are pronounced similarities in structure-function relationships between the bacterial and vertebrate family 6 glycosyltransferases. These two groups appear to provide an example of horizontal gene transfer involving vertebrates and prokaryotes.


Asunto(s)
Bacteroides/enzimología , Glicosiltransferasas/química , Metales/química , Secuencia de Aminoácidos , Antígenos Bacterianos/química , Secuencia de Bases , Carbohidratos/química , Catálisis , Dominio Catalítico , Clonación Molecular , Análisis Mutacional de ADN , Escherichia coli/metabolismo , Glicosiltransferasas/metabolismo , Cinética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
9.
Biochem Biophys Res Commun ; 385(4): 601-4, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19486884

RESUMEN

The specificities of glycosyltransferases make them useful for the synthesis of biologically active oligosaccharides, but also restrict their range of products. In substrate engineering, substrate promiscuity is enhanced by attaching removable interactive groups to weak substrates. Thus, the attachment of betap-nitrophenyl converts galactose from a poor into a good substrate of alpha-1,3-galactosyltransferase. The crystallographic structure of a complex of alpha3GT containing p-nitrophenyl-beta-galactoside shows that the p-nitrophenyl binds similarly to the N-acetylglucosamine of the substrate, N-acetyllactosamine, interacting with the indole of Trp249. p-Nitrophenyl, unlike N-acetylglucosamine, makes no H-bonds but has more non-polar interactions, making it an effective monosaccharide mimetic.


Asunto(s)
Galactosiltransferasas/química , Nitrofenilgalactósidos/química , Cristalografía por Rayos X , Galactosiltransferasas/genética , Conformación Proteica
10.
Nat Commun ; 10(1): 5431, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780661

RESUMEN

DNA ligases catalyze the joining of DNA strands to complete DNA replication, recombination and repair transactions. To protect the integrity of the genome, DNA ligase 1 (LIG1) discriminates against DNA junctions harboring mutagenic 3'-DNA mismatches or oxidative DNA damage, but how such high-fidelity ligation is enforced is unknown. Here, X-ray structures and kinetic analyses of LIG1 complexes with undamaged and oxidatively damaged DNA unveil that LIG1 employs Mg2+-reinforced DNA binding to validate DNA base pairing during the adenylyl transfer and nick-sealing ligation reaction steps. Our results support a model whereby LIG1 fidelity is governed by a high-fidelity (HiFi) interface between LIG1, Mg2+, and the DNA substrate that tunes the enzyme to release pro-mutagenic DNA nicks. In a second tier of protection, LIG1 activity is surveilled by Aprataxin (APTX), which suppresses mutagenic and abortive ligation at sites of oxidative DNA damage.


Asunto(s)
ADN Ligasa (ATP)/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Magnesio/metabolismo , Proteínas Nucleares/metabolismo , ADN/ultraestructura , Roturas del ADN de Cadena Simple , Daño del ADN , ADN Ligasa (ATP)/ultraestructura , Reparación del ADN , Replicación del ADN , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Conformación de Ácido Nucleico , Oxidación-Reducción , Estructura Terciaria de Proteína , Reparación del ADN por Recombinación
11.
Biochemistry ; 47(33): 8711-8, 2008 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-18651752

RESUMEN

alpha-1,3-Galactosyltransferase (alpha3GT) catalyzes the transfer of galactose from UDP-galactose to form an alpha 1-3 link with beta-linked galactosides; it is part of a family of homologous retaining glycosyltransferases that includes the histo-blood group A and B glycosyltransferases, Forssman glycolipid synthase, iGb3 synthase, and some uncharacterized prokaryotic glycosyltransferases. In mammals, the presence or absence of active forms of these enzymes results in antigenic differences between individuals and species that modulate the interplay between the immune system and pathogens. The catalytic mechanism of alpha3GT is controversial, but the structure of an enzyme complex with the donor substrate could illuminate both this and the basis of donor substrate specificity. We report here the structure of the complex of a low-activity mutant alpha3GT with UDP-galactose (UDP-gal) exhibiting a bent configuration stabilized by interactions of the galactose with multiple residues in the enzyme including those in a highly conserved region (His315 to Ser318). Analysis of the properties of mutants containing substitutions for these residues shows that catalytic activity is strongly affected by His315 and Asp316. The negative charge of Asp316 is crucial for catalytic activity, and structural studies of two mutants show that its interaction with Arg202 is needed for an active site structure that facilitates the binding of UDP-gal in a catalytically competent conformation.


Asunto(s)
Ácido Aspártico/química , Galactosiltransferasas/metabolismo , Uridina Difosfato Galactosa/química , Uridina Difosfato Galactosa/metabolismo , Animales , Sitios de Unión , Bovinos , Cristalografía por Rayos X , Galactosiltransferasas/química , Galactosiltransferasas/genética , Modelos Moleculares , Mutación , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
12.
Glycobiology ; 18(12): 1036-43, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18782853

RESUMEN

Complex glycans have important roles in biological recognition processes and considerable pharmaceutical potential. The synthesis of novel glycans can be facilitated by engineering glycosyltransferases to modify their substrate specificities. The choice of sites to modify requires the knowledge of the structures of enzyme-substrate complexes while the complexity of protein structures necessitates the exploration of a large array of multisite mutations. The retaining glycosyltransferase, alpha-1,3-galactosyltransferase (alpha3GT), which catalyzes the synthesis of the alpha-Gal epitope, has strict specificity for UDP-galactose as a donor substrate. Based on the structure of a complex of UDP-galactose with alpha3GT, the specificity for the galactose moiety can be partly attributed to residues that interact with the galactose 2-OH group, particularly His280 and Ala282. With the goal of engineering a variant of bovine alpha3GT with GalNAc transferase activity, we constructed a limited library of 456 alpha3GT mutants containing 19 alternative amino acids at position 280, two each at 281 and 282 and six at position 283. Clones (1500) were screened by assaying partially purified bacterially expressed variants for GalNAc transferase activity. Mutants with the highest levels of GalNAc transferase activity, AGGL or GGGL, had substitutions at all four sites. The AGGL mutant had slightly superior GalNAc transferase activity amounting to about 3% of the activity of the wild-type enzyme with UDP-Gal. This mutant had a low activity with UDP-Gal; its crystallographic structure suggests that the smaller side chains at residues 280-282 form a pocket to accommodate the larger acetamido group of GalNAc. Mutational studies indicate that Leu283 is important for stability in this mutant.


Asunto(s)
Galactosiltransferasas/genética , Uridina Difosfato Galactosa/química , Cristalografía por Rayos X , Biblioteca de Genes , Cinética , Leucina/genética , Leucina/metabolismo , Modelos Moleculares , Mutación , Polisacáridos/biosíntesis , Conformación Proteica , Uridina Difosfato Galactosa/genética
13.
J Mol Biol ; 369(5): 1270-81, 2007 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-17493636

RESUMEN

Alpha-1,3 galactosyltransferase (alpha3GT) catalyzes the transfer of galactose from UDP-galactose to beta-linked galactosides with retention of its alpha configuration. Although several complexes of alpha3GT with inhibitors and substrates have been reported, no structure has been determined of a complex containing intact UDP-galactose. We describe the structure of a complex containing an inhibitory analogue of UDP-galactose, UDP-2F-galactose, in a complex with the Arg365Lys mutant of alpha3GT. The inhibitor is bound in a distorted, bent configuration and comparison with the structure of the apo form of this mutant shows that the interaction induces structural changes in the enzyme, implying a role for ground state destabilization in catalysis. In addition to a general reduction in flexibility in the enzyme indicated by a large reduction in crystallographic B-factors, two loops, one centred around Trp195 and one encompassing the C-terminal 11 residues undergo large structural changes in complexes with UDP and UDP derivatives. The distorted configuration of the bound UDP-2F-galactose in its complex is stabilized, in part, by interactions with residues that are part of or near the flexible loops. Mutagenesis and truncation studies indicate that two highly conserved basic amino acid residues in the C-terminal region, Lys359 and Arg365 are important for catalysis, probably reflecting their roles in these ligand-mediated conformational changes. A second Mn(2+) cofactor has been identified in the catalytic site of a complex of the Arg365Lys with UDP, in a location that suggests it could play a role in facilitating UDP release, consistent with kinetic studies that show alpha3GT activity depends on the binding of two manganese ions. Conformational changes in the C-terminal 11 residues require an initial reorganization of the Trp195 loop and are linked to enzyme progress through the catalytic cycle, including donor substrate distortion, cleavage of the UDP-galactose bond, galactose transfer, and UDP release.


Asunto(s)
Desoxiazúcares/metabolismo , Galactosiltransferasas/química , Galactosiltransferasas/metabolismo , Nucleótidos/metabolismo , Animales , Arginina/genética , Sitios de Unión , Catálisis , Bovinos , Cristalografía por Rayos X , Desoxiazúcares/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Galactosiltransferasas/antagonistas & inhibidores , Galactosiltransferasas/genética , Lisina/genética , Manganeso/química , Manganeso/metabolismo , Modelos Moleculares , Mutación , Nucleótidos/química , Conformación Proteica , Especificidad por Sustrato
14.
Nat Commun ; 9(1): 2642, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29980672

RESUMEN

DNA ligase IV (LigIV) performs the final DNA nick-sealing step of classical nonhomologous end-joining, which is critical for immunoglobulin gene maturation and efficient repair of genotoxic DNA double-strand breaks. Hypomorphic LigIV mutations cause extreme radiation sensitivity and immunodeficiency in humans. To better understand the unique features of LigIV function, here we report the crystal structure of the catalytic core of human LigIV in complex with a nicked nucleic acid substrate in two distinct states-an open lysyl-AMP intermediate, and a closed DNA-adenylate form. Results from structural and mutagenesis experiments unveil a dynamic LigIV DNA encirclement mechanism characterized by extensive interdomain interactions and active site phosphoanhydride coordination, all of which are required for efficient DNA nick sealing. These studies provide a scaffold for defining impacts of LigIV catalytic core mutations and deficiencies in human LIG4 syndrome.


Asunto(s)
Biocatálisis , Dominio Catalítico , ADN Ligasa (ATP)/química , ADN Ligasa (ATP)/metabolismo , ADN/metabolismo , Adenina/metabolismo , Secuencia de Bases , ADN Ligasa (ATP)/genética , Humanos , Lisina/metabolismo , Mutagénesis/genética , Mutación/genética , Polimorfismo Genético , Unión Proteica , Especificidad por Sustrato
15.
Prog Biophys Mol Biol ; 117(2-3): 157-165, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25637650

RESUMEN

Eukaryotic DNA ligases seal DNA breaks in the final step of DNA replication and repair transactions via a three-step reaction mechanism that can abort if DNA ligases encounter modified DNA termini, such as the products and repair intermediates of DNA oxidation, alkylation, or the aberrant incorporation of ribonucleotides into genomic DNA. Such abortive DNA ligation reactions act as molecular checkpoint for DNA damage and create 5'-adenylated nucleic acid termini in the context of DNA and RNA-DNA substrates in DNA single strand break repair (SSBR) and ribonucleotide excision repair (RER). Aprataxin (APTX), a protein altered in the heritable neurological disorder Ataxia with Oculomotor Apraxia 1 (AOA1), acts as a DNA ligase "proofreader" to directly reverse AMP-modified nucleic acid termini in DNA- and RNA-DNA damage responses. Herein, we survey APTX function and the emerging cell biological, structural and biochemical data that has established a molecular foundation for understanding the APTX mediated deadenylation reaction, and is providing insights into the molecular bases of APTX deficiency in AOA1.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ataxias Espinocerebelosas/congénito , Animales , Sitios de Unión , ADN/ultraestructura , Daño del ADN , Proteínas de Unión al ADN/ultraestructura , Exorribonucleasas/química , Exorribonucleasas/metabolismo , Exorribonucleasas/ultraestructura , Humanos , Modelos Químicos , Modelos Moleculares , Proteínas Nucleares/ultraestructura , Unión Proteica , ARN/química , ARN/metabolismo , ARN/ultraestructura , Ataxias Espinocerebelosas/metabolismo , Relación Estructura-Actividad
16.
Environ Mol Mutagen ; 56(1): 1-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25111769

RESUMEN

Exposure to environmental toxicants and stressors, radiation, pharmaceutical drugs, inflammation, cellular respiration, and routine DNA metabolism all lead to the production of cytotoxic DNA strand breaks. Akin to splintered wood, DNA breaks are not "clean." Rather, DNA breaks typically lack DNA 5'-phosphate and 3'-hydroxyl moieties required for DNA synthesis and DNA ligation. Failure to resolve damage at DNA ends can lead to abnormal DNA replication and repair, and is associated with genomic instability, mutagenesis, neurological disease, ageing and carcinogenesis. An array of chemically heterogeneous DNA termini arises from spontaneously generated DNA single-strand and double-strand breaks (SSBs and DSBs), and also from normal and/or inappropriate DNA metabolism by DNA polymerases, DNA ligases and topoisomerases. As a front line of defense to these genotoxic insults, eukaryotic cells have accrued an arsenal of enzymatic first responders that bind and protect damaged DNA termini, and enzymatically tailor DNA ends for DNA repair synthesis and ligation. These nucleic acid transactions employ direct damage reversal enzymes including Aprataxin (APTX), Polynucleotide kinase phosphatase (PNK), the tyrosyl DNA phosphodiesterases (TDP1 and TDP2), the Ku70/80 complex and DNA polymerase ß (POLß). Nucleolytic processing enzymes such as the MRE11/RAD50/NBS1/CtIP complex, Flap endonuclease (FEN1) and the apurinic endonucleases (APE1 and APE2) also act in the chemical "cleansing" of DNA breaks to prevent genomic instability and disease, and promote progression of DNA- and RNA-DNA damage response (DDR and RDDR) pathways. Here, we provide an overview of cellular first responders dedicated to the detection and repair of abnormal DNA termini.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , ADN/química , ADN/genética , Animales , Progresión de la Enfermedad , Inestabilidad Genómica , Humanos , Conformación de Ácido Nucleico
17.
Sci Rep ; 2: 940, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23230506

RESUMEN

Histo-blood group antigens (HBGAs) are a source of antigenic variation between individuals that modulates resistance and susceptibility to pathogens and is a barrier to the spread of enveloped viruses. HBGAs are also produced by a few prokaryotes where they are synthesized by glycosyltransferases (GTs) related to human HBGA synthases. Here we report the first structure of a bacterial GT of this family, from an intestinal resident, Bacteroides ovatus. Unlike its mammalian homologues and other GTs with similar folds, this protein lacks a metal-binding Asp-X-Asp motif and is fully active in the absence of divalent metal ions, yet is strikingly similar in structure and in its interactions with substrates to structurally characterized mammalian metal-dependent mammalian homologues. This shows how an apparently major divergence in catalytic properties can be accommodated by minor structural adjustments and illustrates the structural underpinnings of horizontal transfer of a functional gene from prokaryotes to vertebrates.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/metabolismo , Proteínas Bacterianas/metabolismo , Bacteroides/enzimología , Glicosiltransferasas/metabolismo , Metales/química , Sistema del Grupo Sanguíneo ABO/inmunología , Proteínas Bacterianas/química , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , Glicosiltransferasas/química , Humanos , Estructura Terciaria de Proteína , Especificidad por Sustrato , Termodinámica
18.
Nat Struct Mol Biol ; 18(11): 1189-95, 2011 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-21984210

RESUMEN

DNA ligases finalize DNA replication and repair through DNA nick-sealing reactions that can abort to generate cytotoxic 5'-adenylation DNA damage. Aprataxin (Aptx) catalyzes direct reversal of 5'-adenylate adducts to protect genome integrity. Here the structure of a Schizosaccharomyces pombe Aptx-DNA-AMP-Zn(2+) complex reveals active site and DNA interaction clefts formed by fusing a histidine triad (HIT) nucleotide hydrolase with a DNA minor groove-binding C(2)HE zinc finger (Znf). An Aptx helical 'wedge' interrogates the base stack for sensing DNA ends or DNA nicks. The HIT-Znf, the wedge and an '[F/Y]PK' pivot motif cooperate to distort terminal DNA base-pairing and direct 5'-adenylate into the active site pocket. Structural and mutational data support a wedge-pivot-cut HIT-Znf catalytic mechanism for 5'-adenylate adduct recognition and removal and suggest that mutations affecting protein folding, the active site pocket and the pivot motif underlie Aptx dysfunction in the neurodegenerative disorder ataxia with oculomotor apraxia 1 (AOA1).


Asunto(s)
Apraxias/genética , Apraxias/fisiopatología , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/fisiopatología , Proteínas de Unión al ADN/química , ADN/química , Hipoalbuminemia/genética , Hipoalbuminemia/fisiopatología , Proteínas Nucleares/química , Secuencias de Aminoácidos , Sitios de Unión , Ataxia Cerebelosa/congénito , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Roturas del ADN de Cadena Simple , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA