Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EMBO J ; 42(15): e113565, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37305927

RESUMEN

BRCA1/BARD1 is a tumor suppressor E3 ubiquitin (Ub) ligase with roles in DNA damage repair and in transcriptional regulation. BRCA1/BARD1 RING domains interact with nucleosomes to facilitate mono-ubiquitylation of distinct residues on the C-terminal tail of histone H2A. These enzymatic domains constitute a small fraction of the heterodimer, raising the possibility of functional chromatin interactions involving other regions such as the BARD1 C-terminal domains that bind nucleosomes containing the DNA damage signal H2A K15-Ub and H4 K20me0, or portions of the expansive intrinsically disordered regions found in both subunits. Herein, we reveal novel interactions that support robust H2A ubiquitylation activity mediated through a high-affinity, intrinsically disordered DNA-binding region of BARD1. These interactions support BRCA1/BARD1 recruitment to chromatin and sites of DNA damage in cells and contribute to their survival. We also reveal distinct BRCA1/BARD1 complexes that depend on the presence of H2A K15-Ub, including a complex where a single BARD1 subunit spans adjacent nucleosome units. Our findings identify an extensive network of multivalent BARD1-nucleosome interactions that serve as a platform for BRCA1/BARD1-associated functions on chromatin.


Asunto(s)
Nucleosomas , Proteínas Supresoras de Tumor , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Ubiquitinación , Histonas/genética , Histonas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Cromatina
2.
Proc Natl Acad Sci U S A ; 115(6): 1310-1315, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29348201

RESUMEN

Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin-including crystal structures of multiple orthologs-it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone (Haliotis rufescens). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins.


Asunto(s)
Evolución Molecular , Mucoproteínas/química , Espermatozoides/química , Animales , Sitios de Unión , Gastrópodos/química , Espectroscopía de Resonancia Magnética , Masculino , Modelos Moleculares , Simulación de Dinámica Molecular , Mucoproteínas/genética , Mucoproteínas/metabolismo , Mutagénesis Sitio-Dirigida , Multimerización de Proteína
3.
Proc Natl Acad Sci U S A ; 111(34): E3506-13, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25122681

RESUMEN

Although many transcription activators contact the same set of coactivator complexes, the mechanism and specificity of these interactions have been unclear. For example, do intrinsically disordered transcription activation domains (ADs) use sequence-specific motifs, or do ADs of seemingly different sequence have common properties that encode activation function? We find that the central activation domain (cAD) of the yeast activator Gcn4 functions through a short, conserved sequence-specific motif. Optimizing the residues surrounding this short motif by inserting additional hydrophobic residues creates very powerful ADs that bind the Mediator subunit Gal11/Med15 with high affinity via a "fuzzy" protein interface. In contrast to Gcn4, the activity of these synthetic ADs is not strongly dependent on any one residue of the AD, and this redundancy is similar to that of some natural ADs in which few if any sequence-specific residues have been identified. The additional hydrophobic residues in the synthetic ADs likely allow multiple faces of the AD helix to interact with the Gal11 activator-binding domain, effectively forming a fuzzier interface than that of the wild-type cAD.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Complejo Mediador/química , Complejo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Complejo Mediador/genética , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Activación Transcripcional
4.
Biochemistry ; 53(7): 1134-45, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24498949

RESUMEN

The three-dimensional structures of the dihydrofolate reductase enzymes from Escherichia coli (ecDHFR or ecE) and Homo sapiens (hDHFR or hE) are very similar, despite a rather low level of sequence identity. Whereas the active site loops of ecDHFR undergo major conformational rearrangements during progression through the reaction cycle, hDHFR remains fixed in a closed loop conformation in all of its catalytic intermediates. To elucidate the structural and dynamic differences between the human and E. coli enzymes, we conducted a comprehensive analysis of side chain flexibility and dynamics in complexes of hDHFR that represent intermediates in the major catalytic cycle. Nuclear magnetic resonance relaxation dispersion experiments show that, in marked contrast to the functionally important motions that feature prominently in the catalytic intermediates of ecDHFR, millisecond time scale fluctuations cannot be detected for hDHFR side chains. Ligand flux in hDHFR is thought to be mediated by conformational changes between a hinge-open state when the substrate/product-binding pocket is vacant and a hinge-closed state when this pocket is occupied. Comparison of X-ray structures of hinge-open and hinge-closed states shows that helix αF changes position by sliding between the two states. Analysis of χ1 rotamer populations derived from measurements of (3)JCγCO and (3)JCγN couplings indicates that many of the side chains that contact helix αF exhibit rotamer averaging that may facilitate the conformational change. The χ1 rotamer adopted by the Phe31 side chain depends upon whether the active site contains the substrate or product. In the holoenzyme (the binary complex of hDHFR with reduced nicotinamide adenine dinucleotide phosphate), a combination of hinge opening and a change in the Phe31 χ1 rotamer opens the active site to facilitate entry of the substrate. Overall, the data suggest that, unlike ecDHFR, hDHFR requires minimal backbone conformational rearrangement as it proceeds through its enzymatic cycle, but that ligand flux is brokered by more subtle conformational changes that depend on the side chain motions of critical residues.


Asunto(s)
Tetrahidrofolato Deshidrogenasa/química , Cristalografía por Rayos X , Escherichia coli/enzimología , Humanos , Modelos Moleculares , Conformación Proteica , Tetrahidrofolato Deshidrogenasa/metabolismo
5.
Biochemistry ; 52(20): 3464-77, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23614825

RESUMEN

Escherichia coli dihydrofolate reductase (DHFR) provides a paradigm for the integrated study of the role of protein dynamics in enzyme function. Previous studies of backbone and side chain dynamics have yielded unprecedented insights into the mechanism by which DHFR progresses through the structural changes that occur during its catalytic cycle. Here we report a comprehensive study of the χ1 rotamer populations of the aromatic and γ-methyl containing residues for complexes of the catalytic cycle, based on NMR measurement of (3)JCγCO and (3)JCγN coupling constants. We report conformational and dynamic information for eight distinct complexes, where transitions between rotamer wells may occur on a broad picosecond to millisecond time scale. This large volume of (3)J data has allowed us to fit new Karplus parameterizations for aromatic side chains and to select the best available of previously determined parameters for Ile, Thr, and Val. The (3)JCγCO and (3)JCγN coupling constants are found to be extremely sensitive measures of side chain χ1 rotamers and to give important insights into the extent of conformational averaging. For a subset of residues in DHFR, the extent of rotamer averaging is invariant to the nature of the bound ligand, while for other residues the rotamer averaging differs in one or more complexes of the enzymatic cycle. These variable-averaging residues are generally located near the active site, but the phenomenon extends into the adenosine binding domain. For several residues, the rotamer populations in different DHFR complexes appear to depend on whether the complex is in the closed or occluded state, and some residues are exquisitely sensitive to small changes in the nature of the bound ligand.


Asunto(s)
Escherichia coli/enzimología , Tetrahidrofolato Deshidrogenasa/química , Sitios de Unión , Biocatálisis , Dominio Catalítico , Escherichia coli/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Tetrahidrofolato Deshidrogenasa/metabolismo
6.
Nat Commun ; 12(1): 2220, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850123

RESUMEN

The acidic activation domain (AD) of yeast transcription factor Gal4 plays a dual role in transcription repression and activation through binding to Gal80 repressor and Mediator subunit Med15. The activation function of Gal4 arises from two hydrophobic regions within the 40-residue AD. We show by NMR that each AD region binds the Mediator subunit Med15 using a "fuzzy" protein interface. Remarkably, comparison of chemical shift perturbations shows that Gal4 and Gcn4, two intrinsically disordered ADs of different sequence, interact nearly identically with Med15. The finding that two ADs of different sequence use an identical fuzzy binding mechanism shows a common sequence-independent mechanism for AD-Mediator binding, similar to interactions within a hydrophobic cloud. In contrast, the same region of Gal4 AD interacts strongly with Gal80 via a distinct structured complex, implying that the structured binding partner of an intrinsically disordered protein dictates the type of protein-protein interaction.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Complejo Mediador/química , Complejo Mediador/genética , Metiltransferasas/química , Metiltransferasas/metabolismo , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
7.
Nat Struct Mol Biol ; 28(3): 268-277, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33589814

RESUMEN

Mutations in the E3 ubiquitin ligase RING domains of BRCA1/BARD1 predispose carriers to breast and ovarian cancers. We present the structure of the BRCA1/BARD1 RING heterodimer with the E2 enzyme UbcH5c bound to its cellular target, the nucleosome, along with biochemical data that explain how the complex selectively ubiquitylates lysines 125, 127 and 129 in the flexible C-terminal tail of H2A in a fully human system. The structure reveals that a novel BARD1-histone interface couples to a repositioning of UbcH5c compared to the structurally similar PRC1 E3 ligase Ring1b/Bmi1 that ubiquitylates H2A Lys119 in nucleosomes. This interface is sensitive to both H3 Lys79 methylation status and mutations found in individuals with cancer. Furthermore, NMR reveals an unexpected mode of E3-mediated substrate regulation through modulation of dynamics in the C-terminal tail of H2A. Our findings provide insight into how E3 ligases preferentially target nearby lysine residues in nucleosomes by a steric occlusion and distancing mechanism.


Asunto(s)
Proteína BRCA1/química , Proteína BRCA1/metabolismo , Histonas/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteína BRCA1/ultraestructura , Sitios de Unión , Dominio Catalítico , Microscopía por Crioelectrón , Histonas/química , Histonas/ultraestructura , Humanos , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Unión Proteica , Reproducibilidad de los Resultados , Proteínas Supresoras de Tumor/ultraestructura , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/ultraestructura , Ubiquitina-Proteína Ligasas/ultraestructura
8.
Elife ; 82019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31868593

RESUMEN

Sexual selection can explain the rapid evolution of fertilization proteins, yet sperm proteins evolve rapidly even if not directly involved in fertilization. In the marine mollusk abalone, sperm secrete enormous quantities of two rapidly evolving proteins, lysin and sp18, that are stored at nearly molar concentrations. We demonstrate that this extraordinary packaging is achieved by associating into Fuzzy Interacting Transient Zwitterion (FITZ) complexes upon binding the intrinsically disordered FITZ Anionic Partner (FITZAP). FITZ complexes form at intracellular ionic strengths and, upon exocytosis into seawater, lysin and sp18 are dispersed to drive fertilization. NMR analyses revealed that lysin uses a common molecular interface to bind both FITZAP and its egg receptor VERL. As sexual selection alters the lysin-VERL interface, FITZAP coevolves rapidly to maintain lysin binding. FITZAP-lysin interactions exhibit a similar species-specificity as lysin-VERL interactions. Thus, tethered molecular arms races driven by sexual selection can generally explain rapid sperm protein evolution.


Asunto(s)
Evolución Molecular , Mucoproteínas/genética , Proteínas/genética , Selección Genética , Secuencia de Aminoácidos/genética , Animales , Proteínas del Huevo/genética , Femenino , Fertilización/genética , Gastrópodos/genética , Gastrópodos/crecimiento & desarrollo , Espectroscopía de Resonancia Magnética , Masculino , Espermatozoides/química , Espermatozoides/metabolismo
9.
Cell Rep ; 22(12): 3251-3264, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29562181

RESUMEN

Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Complejo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Complejo Mediador/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Dominios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Activación Transcripcional
10.
Nat Struct Mol Biol ; 20(11): 1243-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24077226

RESUMEN

Molecular evolution is driven by mutations, which may affect the fitness of an organism and are then subject to natural selection or genetic drift. Analysis of primary protein sequences and tertiary structures has yielded valuable insights into the evolution of protein function, but little is known about the evolution of functional mechanisms, protein dynamics and conformational plasticity essential for activity. We characterized the atomic-level motions across divergent members of the dihydrofolate reductase (DHFR) family. Despite structural similarity, Escherichia coli and human DHFRs use different dynamic mechanisms to perform the same function, and human DHFR cannot complement DHFR-deficient E. coli cells. Identification of the primary-sequence determinants of flexibility in DHFRs from several species allowed us to propose a likely scenario for the evolution of functionally important DHFR dynamics following a pattern of divergent evolution that is tuned by cellular environment.


Asunto(s)
Evolución Molecular , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética , Secuencia de Aminoácidos , Cristalografía por Rayos X , Escherichia coli/enzimología , Prueba de Complementación Genética , Flujo Genético , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Selección Genética , Alineación de Secuencia
11.
Biophys J ; 89(6): 3873-83, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16183880

RESUMEN

The current rapid expansion of biological knowledge offers a great opportunity to rationally engineer biological systems that respond to signals such as light and chemical inducers by producing specific proteins. Turning on and off the production of proteins on demand holds great promise for creating significant biotechnological and biomedical applications. With successful stories already registered, the challenge still lies with rationally engineering gene regulatory networks which, like electronic circuits, sense inputs and generate desired outputs. From the literature, we have found kinetic and thermodynamic information describing the molecular components and interactions of the transcriptionally repressing lac, tet, and ara operons. Connecting these components in a model gene network, we determine how to change the kinetic parameters to make this normally nonperiodic system one which has well-defined oscillations. Simulating the designed lac-tet-ara gene network using a hybrid stochastic-discrete and stochastic-continuous algorithm, we seek to elucidate the relationship between the strength and type of specific connections in the gene network and the oscillatory nature of the protein product. Modeling the molecular components of the gene network allows the simulation to capture the dynamics of the real biological system. Analyzing the effect of modifications at this level provides the ability to predict how changes to experimental systems will alter the network behavior, while saving the time and expense of trial and error experimental modifications.


Asunto(s)
Relojes Biológicos/fisiología , Fenómenos Fisiológicos Celulares , Regulación de la Expresión Génica/fisiología , Modelos Biológicos , Proteoma/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal/fisiología , Animales , Simulación por Computador , Humanos , Biosíntesis de Proteínas/fisiología , Activación Transcripcional/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA