Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clin Exp Allergy ; 51(10): 1295-1309, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34310748

RESUMEN

BACKGROUND: Despite the increasing incidence of anaphylaxis, its underlying molecular mechanisms and biomarkers for appropriate diagnosis remain undetermined. The rapid onset and potentially fatal outcome in the absence of managed treatment prevent its study. Up today, there are still no known biomarkers that allow an unequivocal diagnosis. Therefore, the aim of this study was to explore metabolic changes in patients suffering anaphylactic reactions depending on the trigger (food and/or drug) and severity (moderate and severe) in a real-life set-up. METHODS: Eighteen episodes of anaphylaxis, one per patient, were analysed. Sera were collected during the acute phase (T1), the recovery phase (T2) and around 2-3 months after the anaphylactic reaction (T0: basal state). Reactions were classified following an exhaustive allergological evaluation for severity and trigger. Sera samples were analysed using untargeted metabolomics combining liquid chromatography coupled to mass spectrometry (LC-MS) and proton nuclear magnetic resonance spectroscopy (1 H-NMR). RESULTS: 'Food T1 vs T2' and 'moderate T1 vs T2' anaphylaxis comparisons showed clear metabolic patterns during the onset of an anaphylactic reaction, which differed from those induced by drugs, food + drug or severe anaphylaxis. Moreover, the model of food anaphylaxis was able to distinguish the well-characterized IgE (antibiotics) from non-IgE-mediated anaphylaxis (nonsteroidal anti-inflammatory drugs), suggesting a differential metabolic pathway associated with the mechanism of action. Metabolic differences between 'moderate vs severe' at the acute phase T1 and at basal state T0 were studied. Among the altered metabolites, glucose, lipids, cortisol, betaine and oleamide were observed altered. CONCLUSIONS: The results of this exploratory study provide the first evidence that different anaphylactic triggers or severity induce differential metabolic changes along time or at specific time-point, respectively. Besides, the basal status T0 might identify high-risk patients, thus opening new ways to understand, diagnose and treat anaphylaxis.


Asunto(s)
Anafilaxia , Alérgenos , Anafilaxia/inducido químicamente , Anafilaxia/etiología , Antiinflamatorios no Esteroideos/efectos adversos , Biomarcadores , Alimentos , Humanos
2.
Nat Commun ; 15(1): 6069, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025846

RESUMEN

Whole genome duplication is frequently observed in cancer, and its prevalence in our prior analysis of end-stage, homologous recombination deficient high grade serous ovarian cancer (almost 80% of samples) supports the notion that whole genome duplication provides a fitness advantage under the selection pressure of therapy. Here, we therefore aim to identify potential therapeutic vulnerabilities in primary high grade serous ovarian cancer with whole genome duplication by assessing differentially expressed genes and pathways in 79 samples. We observe that MHC-II expression is lowest in tumors which have acquired whole genome duplication early in tumor evolution, and further demonstrate that reduced MHC-II expression occurs in subsets of tumor cells rather than in canonical antigen-presenting cells. Early whole genome duplication is also associated with worse patient survival outcomes. Our results suggest an association between the timing of whole genome duplication, MHC-II expression and clinical outcome in high grade serous ovarian cancer that warrants further investigation for therapeutic targeting.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Humanos , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Regulación Neoplásica de la Expresión Génica , Duplicación de Gen , Genoma Humano , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo
3.
Clin Cancer Res ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837893

RESUMEN

PURPOSE: To evaluate RB1 expression and survival across ovarian carcinoma histotypes, and how co-occurrence of BRCA1 or BRCA2 (BRCA) alterations and RB1 loss influences survival in tubo-ovarian high-grade serous carcinoma (HGSC). EXPERIMENTAL DESIGN: RB1 protein expression was classified by immunohistochemistry in ovarian carcinomas of 7436 patients from the Ovarian Tumor Tissue Analysis consortium. We examined RB1 expression and germline BRCA status in a subset of 1134 HGSC, and related genotype to overall survival (OS), tumor-infiltrating CD8+ lymphocytes and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cells with and without BRCA1 alterations to model co-loss with treatment response. We performed whole-genome and transcriptome data analyses on 126 primary HGSC to characterize tumors with concurrent BRCA-deficiency and RB1 loss. RESULTS: RB1 loss was associated with longer OS in HGSC, but with poorer prognosis in endometrioid ovarian carcinoma. Patients with HGSC harboring both RB1 loss and pathogenic germline BRCA variants had superior OS compared to patients with either alteration alone, and their median OS was three times longer than those without pathogenic BRCA variants and retained RB1 expression (9.3 vs. 3.1 years). Enhanced sensitivity to cisplatin and paclitaxel was seen in BRCA1-altered cells with RB1 knockout. Combined RB1 loss and BRCA-deficiency correlated with transcriptional markers of enhanced interferon response, cell-cycle deregulation, and reduced epithelial-mesenchymal transition. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. CONCLUSIONS: Co-occurrence of RB1 loss and BRCA-deficiency was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.

4.
medRxiv ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37986741

RESUMEN

Background: Somatic loss of the tumour suppressor RB1 is a common event in tubo-ovarian high-grade serous carcinoma (HGSC), which frequently co-occurs with alterations in homologous recombination DNA repair genes including BRCA1 and BRCA2 (BRCA). We examined whether tumour expression of RB1 was associated with survival across ovarian cancer histotypes (HGSC, endometrioid (ENOC), clear cell (CCOC), mucinous (MOC), low-grade serous carcinoma (LGSC)), and how co-occurrence of germline BRCA pathogenic variants and RB1 loss influences long-term survival in a large series of HGSC. Patients and methods: RB1 protein expression patterns were classified by immunohistochemistry in epithelial ovarian carcinomas of 7436 patients from 20 studies participating in the Ovarian Tumor Tissue Analysis consortium and assessed for associations with overall survival (OS), accounting for patient age at diagnosis and FIGO stage. We examined RB1 expression and germline BRCA status in a subset of 1134 HGSC, and related genotype to survival, tumour infiltrating CD8+ lymphocyte counts and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cell lines with and without BRCA1 mutations to model co-loss with treatment response. We also performed genomic analyses on 126 primary HGSC to explore the molecular characteristics of concurrent homologous recombination deficiency and RB1 loss. Results: RB1 protein loss was most frequent in HGSC (16.4%) and was highly correlated with RB1 mRNA expression. RB1 loss was associated with longer OS in HGSC (hazard ratio [HR] 0.74, 95% confidence interval [CI] 0.66-0.83, P = 6.8 ×10-7), but with poorer prognosis in ENOC (HR 2.17, 95% CI 1.17-4.03, P = 0.0140). Germline BRCA mutations and RB1 loss co-occurred in HGSC (P < 0.0001). Patients with both RB1 loss and germline BRCA mutations had a superior OS (HR 0.38, 95% CI 0.25-0.58, P = 5.2 ×10-6) compared to patients with either alteration alone, and their median OS was three times longer than non-carriers whose tumours retained RB1 expression (9.3 years vs. 3.1 years). Enhanced sensitivity to cisplatin (P < 0.01) and paclitaxel (P < 0.05) was seen in BRCA1 mutated cell lines with RB1 knockout. Among 126 patients with whole-genome and transcriptome sequence data, combined RB1 loss and genomic evidence of homologous recombination deficiency was correlated with transcriptional markers of enhanced interferon response, cell cycle deregulation, and reduced epithelial-mesenchymal transition in primary HGSC. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. Conclusions: Co-occurrence of RB1 loss and BRCA mutation was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.

5.
Sci Rep ; 11(1): 21906, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753989

RESUMEN

Ground based research modalities of microgravity have been proposed as innovative methods to investigate the aetiology of chronic age-related conditions such as cardiovascular disease. Dry Immersion (DI), has been effectively used to interrogate the sequelae of physical inactivity (PI) and microgravity on multiple physiological systems. Herein we look at the causa et effectus of 3-day DI on platelet phenotype, and correlate with both miRomic and circulating biomarker expression. The miRomic profile of platelets is reflective of phenotype, which itself is sensitive and malleable to the exposome, undergoing responsive transitions in order to fulfil platelets role in thrombosis and haemostasis. Heterogeneous platelet subpopulations circulate at any given time, with varying degrees of sensitivity to activation. Employing a DI model, we investigate the effect of acute PI on platelet function in 12 healthy males. 3-day DI resulted in a significant increase in platelet count, plateletcrit, platelet adhesion, aggregation, and a modest elevation of platelet reactivity index (PRI). We identified 15 protein biomarkers and 22 miRNA whose expression levels were altered after DI. A 3-day DI model of microgravity/physical inactivity induced a prothrombotic platelet phenotype with an unique platelet miRNA signature, increased platelet count and plateletcrit. This correlated with a unique circulating protein biomarker signature. Taken together, these findings highlight platelets as sensitive adaptive sentinels and functional biomarkers of epigenetic drift within the cardiovascular compartment.


Asunto(s)
Plaquetas/citología , Proteínas Sanguíneas/metabolismo , MicroARNs/genética , Modelos Biológicos , Ingravidez , Adulto , Biomarcadores/sangre , Hemostasis , Humanos , Masculino , Trombosis/metabolismo
6.
Burns ; 46(7): 1585-1602, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32475797

RESUMEN

BACKGROUND: Burn injuries are a major cause of morbidity and mortality worldwide. Despite advances in therapeutic strategies for the management of patients with severe burns, the sequelae are pathophysiologically profound, up to the systemic and metabolic levels. Management of patients with a severe burn injury is a long-term, complex process, with treatment dependent on the degree and location of the burn and total body surface area (TBSA) affected. In adverse conditions with limited resources, efficient triage, stabilisation, and rapid transfer to a specialised intensive care burn centre is necessary to provide optimal outcomes. This initial lag time and the form of primary treatment initiated, from injury to specialist care, is crucial for the burn patient. This study aims to investigate the efficacy of a novel visco-elastic burn dressing with a proprietary bio-stimulatory marine mineral complex (MXC) as a primary care treatment to initiate a healthy healing process prior to specialist care. METHODS: A new versatile emergency burn dressing saturated in a >90% translucent water-based, sterile, oil-free gel and carrying a unique bio-stimulatory marine mineral complex (MXC) was developed. This dressing was tested using LabSkin as a burn model platform. LabSkin a novel cellular 3D-dermal organotypic full thickness human skin equivalent, incorporating fully-differentiated dermal and epidermal components that functionally models skin. Cell and molecular analysis was carried out by in vitro Real-Time Cellular Analysis (RTCA), thermal analysis, and focused transcriptomic array profiling for quantitative gene expression analysis, interrogating both wound healing and fibrosis/scarring molecular pathways. In vivo analysis was also performed to assess the bio-mechanical and physiological effects of this novel dressing on human skin. RESULTS: This hybrid emergency burn dressing (EBD) with MXC was hypoallergenic, and improved the barrier function of skin resulting in increased hydration up to 24 h. It was demonstrated to effectively initiate cooling upon application, limiting the continuous burn effect and preventing local tissue from damage and necrosis. xCELLigence RTCA® on primary human dermal cells (keratinocyte, fibroblast and micro-vascular endothelial) demonstrated improved cellular function with respect to tensegrity, migration, proliferation and cell-cell contact (barrier formation) [1]. Quantitative gene profiling supported the physiological and cellular function finding. A beneficial quid pro quo regulation of genes involved in wound healing and fibrosis formation was observed at 24 and 48 h time points. CONCLUSION: Utilisation of this EBD + MXC as a primary treatment is an effective and easily applicable treatment in cases of burn injury, proving both a cooling and hydrating environment for the wound. It regulates inflammation and promotes healing in preparation for specialised secondary burn wound management. Moreover, it promotes a healthy remodelling phenotype that may potentially mitigate scarring. Based on our findings, this EBD + MXC is ideal for use in all pre-hospital, pre-surgical and resource limited settings.


Asunto(s)
Vendas Hidrocoloidales , Quemaduras , Cicatriz , Productos Biológicos/uso terapéutico , Quemaduras/patología , Quemaduras/terapia , Cicatriz/patología , Humanos , Técnicas In Vitro , Piel/patología , Cicatrización de Heridas
7.
Mech Ageing Dev ; 174: 76-85, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29155255

RESUMEN

The cardiovascular system is responsible for transport of blood and nutrients to tissues, and is pivotal to the physiological health and longevity. Epigenetic modification is a natural, age-associated process resulting in highly contextualised gene expression with clear implications for cell differentiation and disease onset. Biological/epigenetic age is independent of chronological age, constituting a highly reflective snapshot of an individual's overall health. Accelerated vascular ageing is of major concern, effectively lowering disease threshold. Age-related chronic illness involves a complex interplay between many biological processes and is modulated by non-modifiable and modifiable risk factors. These alter the static genome by a number of epigenetic mechanisms, which change gene expression in an age and lifestyle dependent manner. This 'epigenetic drift' impacts health and contributes to the etiology of chronic illness. Lifestyle factors may cause acceleration of this epigenetic "clock", pre-disposing individuals to cardiovascular disease. Nutrition and physical activity are modifiable lifestyle choices, synergistically contributing to cardiovascular health. They represent a powerful potential epigenetic intervention point for effective cardiovascular protective and management strategies. Thus, together with traditional risk factors, monitoring the epigenetic signature of ageing may prove beneficial for tailoring lifestyle to fit biology - supporting the increasingly popular concept of "ageing well".


Asunto(s)
Envejecimiento/metabolismo , Enfermedades Cardiovasculares/prevención & control , Fenómenos Fisiológicos Nutricionales del Anciano , Epigénesis Genética , Ejercicio Físico , Animales , Enfermedades Cardiovasculares/metabolismo , Humanos
8.
Front Physiol ; 8: 799, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29081752

RESUMEN

Dry immersion (DI) is a Russian-developed, ground-based model to study the physiological effects of microgravity. It accurately reproduces environmental conditions of weightlessness, such as enhanced physical inactivity, suppression of hydrostatic pressure and supportlessness. We aimed to study the integrative physiological responses to a 3-day strict DI protocol in 12 healthy men, and to assess the extent of multi-system deconditioning. We recorded general clinical data, biological data and evaluated body fluid changes. Cardiovascular deconditioning was evaluated using orthostatic tolerance tests (Lower Body Negative Pressure + tilt and progressive tilt). Metabolic state was tested with oral glucose tolerance test. Muscular deconditioning was assessed via muscle tone measurement. Results: Orthostatic tolerance time dropped from 27 ± 1 to 9 ± 2 min after DI. Significant impairment in glucose tolerance was observed. Net insulin response increased by 72 ± 23% on the third day of DI compared to baseline. Global leg muscle tone was approximately 10% reduced under immersion. Day-night changes in temperature, heart rate and blood pressure were preserved on the third day of DI. Day-night variations of urinary K+ diminished, beginning at the second day of immersion, while 24-h K+ excretion remained stable throughout. Urinary cortisol and melatonin metabolite increased with DI, although within normal limits. A positive correlation was observed between lumbar pain intensity, estimated on the second day of DI, and mean 24-h urinary cortisol under DI. In conclusion, DI represents an accurate and rapid model of gravitational deconditioning. The extent of glucose tolerance impairment may be linked to constant enhanced muscle inactivity. Muscle tone reduction may reflect the reaction of postural muscles to withdrawal of support. Relatively modest increases in cortisol suggest that DI induces a moderate stress effect. In prospect, this advanced ground-based model is extremely suited to test countermeasures for microgravity-induced deconditioning and physical inactivity-related pathologies.

9.
Biomed Res Int ; 2016: 2465763, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26942189

RESUMEN

Biomarkers encompass a wide range of different measurable indicators, representing a tangible link to physiological changes occurring within the body. Accessibility, sensitivity, and specificity are significant factors in biomarker suitability. New biomarkers continue to be discovered, and questions over appropriate selection and assessment of their usefulness remain. If traditional markers of inflammation are not sufficiently robust in their specificity, then perhaps alternative means of detection may provide more information. Epigenetic drift (epigenetic modifications as they occur as a direct function with age), and its ancillary elements, including platelets, secreted microvesicles (MVs), and microRNA (miRNA), may hold enormous predictive potential. The majority of epigenetic drift observed in blood is independent of variations in blood cell composition, addressing concerns affecting traditional blood-based biomarker efficacy. MVs are found in plasma and other biological fluids in healthy individuals. Altered MV/miRNA profiles may also be found in individuals with various diseases. Platelets are also highly reflective of physiological and lifestyle changes, making them extremely sensitive biomarkers of human health. Platelets release increased levels of MVs in response to various stimuli and under a plethora of disease states, which demonstrate a functional effect on other cell types.


Asunto(s)
Biomarcadores de Tumor/genética , Epigénesis Genética/genética , Inflamación/genética , MicroARNs/genética , Envejecimiento/sangre , Envejecimiento/patología , Biomarcadores de Tumor/sangre , Plaquetas , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/patología , Humanos , Inflamación/sangre , Inflamación/patología , MicroARNs/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA