RESUMEN
Coupling of orbital degree of freedom with a spin exchange, i.e., Kugel-Khomskii-type interaction (KK), governs a host of material properties, including colossal magnetoresistance, enhanced magnetoelectric response, and photoinduced high-temperature magnetism. In general, KK-type interactions lead to deviation in experimental observables of coupled Hamiltonian near or below the magnetic transition. Using diffraction and spectroscopy experiments, here we report anomalous changes in lattice parameters, electronic states, spin dynamics, and phonons at four times the Néel transition temperature (T_{N}) in CrVO_{4}. The temperature is significantly higher than other d-orbital compounds such as manganites and vanadates, where effects are limited to near or below T_{N}. The experimental observations are rationalized using first-principles and Green's function-based phonon and spin simulations that show unprecedentedly strong KK-type interactions via a superexchange process and an orbital-selective spin-phonon coupling coefficient at least double the magnitude previously reported for strongly coupled spin-phonon systems. Our results present an opportunity to explore the effect of KK-type interactions and spin-phonon coupling well above T_{N} and possibly bring various properties closer to application, for example, strong room-temperature magnetoelectric coupling.
RESUMEN
We present a study of the pressure dependence of the structure of partially hydrated hexagonal CePO4 up to 21 GPa using synchrotron powder X-ray diffraction. At a pressure of 10 GPa, a second-order structural phase transition is observed, associated with a novel polymorph. The previously unknown high-pressure phase has a monoclinic structure with a similar atomic arrangement as the low-pressure phase, but with reduced symmetry, belonging to space group C2. Group-subgroup relations hold for the space symmetry groups of both structures. There is no detectable volume discontinuity at the phase transition. Here we provide structural information on the new phase and determine the axial compressibility and bulk modulus for both phases. They are found to have an anisotropic behavior and to be much more compressible than the denser monazite-like polymorph of CePO4. In addition, the isothermal compressibility tensor for the high-pressure structure is reported at 10 GPa and the direction of maximum compressibility described. Finally, the possible role of water and the pressure medium in the high-pressure behavior is discussed. The results are compared with those from other rare-earth orthophosphates.
RESUMEN
The effects of high pressure on the crystal structure of orthorhombic (Pnma) perovskite-type cerium scandate were studied in situ under high pressure by means of synchrotron X-ray powder diffraction, using a diamond-anvil cell. We found that the perovskite-type crystal structure remains stable up to 40 GPa, the highest pressure reached in the experiments. The evolution of unit-cell parameters with pressure indicated an anisotropic compression. The room-temperature pressure-volume equation of state (EOS) obtained from the experiments indicated the EOS parameters V0 = 262.5(3) Å3, B0 = 165(7) GPa, and B0' = 6.3(5). From the evolution of microscopic structural parameters like bond distances and coordination polyhedra of cerium and scandium, the macroscopic behavior of CeScO3 under compression was explained and reasoned for its large pressure stability. The reported results are discussed in comparison with high-pressure results from other perovskites.
RESUMEN
The high-pressure crystal structure, lattice-vibrations, and electronic band structure of BiSbO4 were studied by ab initio simulations. We also performed Raman spectroscopy, infrared spectroscopy, and diffuse-reflectance measurements, as well as synchrotron powder X-ray diffraction. High-pressure X-ray diffraction measurements show that the crystal structure of BiSbO4 remains stable up to at least 70 GPa, unlike other known MTO4-type ternary oxides. These experiments also give information on the pressure dependence of the unit-cell parameters. Calculations properly describe the crystal structure of BiSbO4 and the changes induced by pressure on it. They also predict a possible high-pressure phase. A room-temperature pressure-volume equation of state is determined, and the effect of pressure on the coordination polyhedron of Bi and Sb is discussed. Raman- and infrared-active phonons were measured and calculated. In particular, calculations provide assignments for all the vibrational modes as well as their pressure dependence. In addition, the band structure and electronic density of states under pressure were also calculated. The calculations combined with the optical measurements allow us to conclude that BiSbO4 is an indirect-gap semiconductor, with an electronic band gap of 2.9(1) eV. Finally, the isothermal compressibility tensor for BiSbO4 is given at 1.8 GPa. The experimental (theoretical) data revealed that the direction of maximum compressibility is in the (0 1 0) plane at â¼33° (38°) to the c-axis and 47° (42°) to the a-axis. The reliability of the reported results is supported by the consistency between experiments and calculations.
RESUMEN
Variable-temperature Raman spectroscopic and synchrotron X-ray diffraction studies were performed on BaTe2O6 (orthorhombic, space group: Cmcm), a mixed-valence tellurium compound with a layered structure, to understand structural stability and anharmonicity of phonons. The structural and vibrational studies indicate no phase transition in it over a wider range of temperature (20 to 853 K). The structure shows anisotropic expansion with coefficients of thermal expansion in the order αb â« αa > αc, which was attributed to the anisotropy in bonding and structure of BaTe2O6. Temperature evolution of Raman modes of BaTe2O6 indicated a smooth decreasing trend in mode frequencies with increasing temperature, while the full width at half-maximum (fwhm) of all modes systematically increases due to a rise in phonon scattering processes. With the use of our earlier reported isothermal mode Grüneisen parameters, thermal properties such as thermal expansion coefficient and molar specific heat are calculated. The pure anharmonic (explicit) and quasiharmonic (implicit) contribution to the total anharmonicity is delineated and compared. The temperature dependence of phonon mode frequencies and their fwhm values are analyzed by anharmonicity models, and the dominating anharmonic phonon scattering mechanism is concluded in BaTe2O6. In addition to the lattice modes, several external modes of TeOn (n = 5, 6) are found to be strongly anharmonic. The ab initio electronic structure calculations indicated BaTe2O6 is a direct band gap semiconductor with gap energy of â¼2.1 eV. Oxygen orbitals, namely, O-2p states in the valence band maximum and the sp-hybridized states in the conduction band minimum, are mainly involved in the electronic transitions. In addition a number of electronic transitions are predicted by the electronic structure calculations. Experimental photoluminescence results are adequately explained by the ab initio calculations. Further details of the structural and vibrational properties are explained in the manuscript.
RESUMEN
The properties of nanomaterials are highly dependent on their size, morphology, crystal phase, etc., which in turn depend on the method of synthesis. We report here the electrical and magnetic characterisation of sonochemically synthesized Fe(3+) doped nano BaTiO3 samples. The dopant ion concentration has been optimized and the coexistence of ferromagnetism and ferroelectricity has been observed in the sample. With increase in Fe(3+) doping from 0 to 20 mol%, a gradual phase change from tetragonal to hexagonal occurred in these sonochemically synthesized BaTiO3 nanomaterials. Below 15 mol% Fe concentration the material displays ferroelectric behaviour with the absence of any magnetic ordering, while at an Fe concentration of â¼15 mol% the material exhibits both room temperature ferromagnetism and ferroelectricity. Ferromagnetism as well as relaxor type behaviour has been observed in the BaTiO3:Fe(3+)(20%) sample. We have studied the ferromagnetic and ferroelectric ordering in these sonochemically synthesized Fe(3+) doped BaTiO3 nanomaterials and have tried to correlate the results with their crystal structure and morphology. The origin of ferromagnetism in these materials has been attributed to both intrinsic as well as extrinsic factors.
RESUMEN
Gd2Zr2O7 is being contemplated as a futuristic matrix for the incorporation of high-level radioactive nuclear waste. This compound has the unique ability to incorporate several fission products and heavy metal ions like uranium and thorium into its lattice sites without undergoing structural changes. X-ray diffraction analyses of Gd2-xUxZr2O7+δ samples indicate that the parent compound can incorporate a substantial amount of uranium, both under oxidizing and reducing conditions. The oxidation state of these samples was investigated by X-ray photoelectron spectroscopy. The thermodynamic stability of uranium-substituted Gd2Zr2O7 is an important parameter that will govern the long-term storage of uranium and minor actinides in this matrix. High-temperature calorimetry has been used to investigate the stability of the Gd2-xUxZr2O7+δ (0.00 ≤ x ≤ 0.15) compositions. The standard molar free energy of the formation of Gd2-xUxZr2O7+δ (0.00 ≤ x ≤ 0.15) compositions has been estimated. From the free energy of formation data, the sample corresponding to x = 0.15 was found to be most stable in the Gd2-xUxZr2O7+δ (0.00 ≤ x ≤ 0.15) series. The relative stabilities of U(4+) and U(6+) substituted gadolinium zirconate have been discussed on the basis of the charge on the uranium ion and the incorporation of corresponding extra oxygen atoms into the lattice for charge compensation.
RESUMEN
The B-site tailored YIn(1-x)Fe(x)O3 (0.0≤ x≤ 1.0) series was synthesized by glycine-aided gel-combustion technique and subjected to extensive structural and electrical investigations. The temperature had tremendous bearing on the phase evolution exhibited by the system. The entire system crystallized as C-type metastable polymorph in the as-synthesized form. Hexagonal polymorphs of Fe(3+)-rich compositions could be isolated by controlled heat treatment at 750 °C. Raman spectroscopic investigations showed that, while there is a general shrinkage of the lattice due to substitution of a smaller ion at In(3+)-site, there is an apparent dilation of the Y-O bond, and this anomaly reflects in the electrical behavior exhibited by the system. The single-phasic hexagonal nominal compositions, YIn(1-x)Fe(x)O3 (0.0 ≤ x ≤ 0.3), were also studied by impedance spectroscopy. The dielectric constant was found to drastically increase from 10 for YInO3 to 1000 for YIn(0.7)Fe(0.3)O3 at room temperature stressing the role of B-site tailoring on electrical behavior. More interestingly, careful substitution of Fe into YInO3 could tune the electrical behavior from a dielectric to relaxor ferroelectric in the temperature range studied. The nominal composition YIn(0.7)Fe(0.3)O3 showed a classical relaxor ferroelectric like behavior which is an important observation in context of the search for new lead free relaxor materials.
RESUMEN
Detailed structural and electrical investigations were carried out on an A-site disordered hexagonal Y(1-x)Gd(x)InO3 (0.0 ≤ x ≤ 1.0) series synthesized by a self-assisted gel-combustion route. The phase relations show profound temperature dependence. The metastable C-type modification could be stabilized for all the compositions, which on further heating get converted to stable hexagonal polymorphs. The conversion temperature (C-type to hexagonal) was found to increase with an increase in Y(3+) content. The system was observed to be single-phasic hexagonal at 1250 °C throughout the composition range. Interestingly, the increase in planar bonds of InO5 polyhedra was found to be twice that of the apical bonds on Gd(3+) substitution. Careful Raman spectroscopic studies highlighted a definitive though subtle structural change from x = 0.7 onward. The same observation is also corroborated by the dielectric studies. Electric field-dependent polarization measurements showed the ferroelectric hysteresis loop for pure YInO3. The system transforms from ferroelectric in YInO3 to almost paraelectric for GdInO3. In the present study, XRD, Raman, and electrical characterizations in conjunction reveal that to tune the electrical properties of the hexagonal rare earth indates, the variation in tilting of InO5 polyhedra has to be influenced, which could not be brought about by isovalent A-site substitution.
RESUMEN
Zircon-type PrVO4 and SmVO4 have been studied by high-pressure Raman spectroscopy up to 17 GPa. The occurrence of phase transitions has been detected when compression exceeds 6 GPa. The transformations are not reversible. Raman spectra of the high-pressure phases show similarities with those expected for a monazite-type phase in PrVO4 and a scheelite-type phase in SmVO4.The high-pressure phases have been also synthesized using a large-volume press and recovered at ambient conditions. X-ray diffraction measurements of the metastable products recovered after decompression confirms the monazite (PrVO4) and scheelite (SmVO4) structures of the high-pressure phases. Based upon optical properties of the reported new polymorphs, novel applications for rare-earth vanadates are proposed, including photocatalytic hydrogen production.
RESUMEN
The Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 (0.0 ≤ x ≤ 2.0) series was synthesized by the gel combustion method. This system exhibited the presence of a fluorite-type phase, along with a narrow biphasic region, depending upon the Ce/Gd content in the sample. Thermal stability of these new compounds under oxidizing and reducing conditions has been investigated. The products obtained on decomposition of Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 in oxidizing and reducing conditions were found to be entirely different. It was observed that in air the fluorite-type solid solutions of Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 composition undergo phase separation into perovskite GdAlO3 and fluorite-type solid solutions of Gd-Ce-Zr-O or Ce-Zr-Al-O depending upon the extent of Ce and Al substitution. On the other hand, Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 samples on heating under reducing conditions show a phase separation to CeAlO3 perovskite and a defect-fluorite of Gd2Zr2O7. The extent of metastability for a typical composition of Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O7 (nano), Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O(6.6) (heated under reduced conditions), Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O7 (heated in air at 1200 °C) has been experimentally determined employing a high temperature Calvet calorimeter. On the basis of thermodynamic stability data, it could be inferred that the formation of a more stable compound in the presence of two competing cations (i.e., Gd(3+) and Ce(3+)) is guided by the crystallographic stability.
RESUMEN
A new wolframite-type polymorph of InVO4 is identified under compression near 7 GPa by in situ high-pressure (HP) X-ray diffraction (XRD) and Raman spectroscopic investigations on the stable orthorhombic InVO4. The structural transition is accompanied by a large volume collapse (ΔV/V = -14%) and a drastic increase in bulk modulus (from 69 to 168 GPa). Both techniques also show the existence of a third phase coexisting with the low- and high-pressure phases in a limited pressure range close to the transition pressure. XRD studies revealed a highly anisotropic compression in orthorhombic InVO4. In addition, the compressibility becomes nonlinear in the HP polymorph. The volume collapse in the lattice is related to an increase of the polyhedral coordination around the vanadium atoms. The transformation is not fully reversible. The drastic change in the polyhedral arrangement observed at the transition is indicative of a reconstructive phase transformation. The HP phase here found is the only modification of InVO4 reported to date with 6-fold coordinated vanadium atoms. Finally, Raman frequencies and pressure coefficients in the low- and high-pressure phases of InVO4 are reported.
RESUMEN
We have studied by means of angle-dispersive powder synchrotron X-ray diffraction the structural behavior of KCaPO4, SrKPO4, and K2Ce(PO4)2 under high pressure up to 26, 25, and 22 GPa, respectively. For KCaPO4, we have also accurately determined the crystal structure under ambient conditions, which differs from the structure previously reported. Arguments supporting our structural determination will be discussed. We have found that KCaPO4 undergoes a reversible phase transition. The onset of the transition is at 5.6 GPa. It involves a symmetry decrease. The low-pressure phase is described by space group P3Ì m1 and the high-pressure phase by space group Pnma. For KSrPO4 and K2Ce(PO4)2, no evidence of phase transitions has been found up to the highest pressure covered by the experiments. For the three compounds, the linear compressibility for the different crystallographic axes and the pressure-volume equation of states are reported and compared with those of other phosphates. The three studied compounds are among the most compressible phosphates. The results of the study improve the knowledge about the high-pressure behavior of complex phosphates.
RESUMEN
A low temperature surfactant-free solution-phase method has been successfully developed for the synthesis of ternary In2TiO5, nanoparticles using a solvothermal route. The mechanistic aspects of synthesis of In2TiO5 nanoparticles from precursors, In(acac)3 and Ti(IV) isopropoxide in benzyl alcohol at 220 degrees C under solvothermal conditions, were investigated by GC-MS and 13C{1H} NMR analysis. The N2-BET surface area of the 5-8 nm sized In2TiO5 nanoparticles was found to be 60 m2 g(-1), which decreased with increase in calcination temperature; 38 m2 g(-1) at 800 degrees C; 5 m2 g(-1) at 1200 degrees C. The High resolution transmission electron microscopy (HR-TEM) shows well-developed lattice fringes of the crystalline nanoparticles, and selected area electron diffraction (SAED), pattern was indexed to be orthorhombic In2TiO5. The nanoparticles show better photocatalytic hydrogen generation from water-methanol mixtures over bulk In2TiO5, anatase TiO2 nanoparticles prepared by identical route and commercial TiO2 photocatalyst (Degussa, P25) under UV-visible irradiation (16% UV + 84% visible). Photocatalytic properties as a function of crystallinity and surface area of indium titanate nanoparticles have also been investigated. The high photoactivity obtained is correlated with the electronic and crystal structure of In2TiO5.
RESUMEN
We report a simple, versatile, low cost fabrication technique for synthesizing nanorod arrays whose architecture is suited for many applications spanning the nanometer to micrometer range. Specifically, we have covered the range of nanorod diameter from 50 to 1200 nm. From a detailed study of the growth parameters involved in the synthesis of the ZnO nanorod arrays from an aqueous solution, we report, in particular, the effects of varying the capping agent, substrate and substrate-seeding. We find that seeding the substrate and selecting the appropriate capping agent play the most crucial roles in the alignment of nanorod arrays. Our study on the use of different precursor materials and varied substrates for the growth of ZnO nanorod arrays should lead to an enhanced understanding of the controllable growth of ZnO crystals and nanostructures.
RESUMEN
In this study we demonstrate the remarkable bi-functionalities of doped CeF3 nanoparticles. The sonochemically synthesized triple doped CeF3:Mn2+:Dy3+:Tb3+ nanoparticles exhibited room temperature ferromagnetism and also serves as a good white light emitting phosphor material. The particles were found to be mostly spherical in shape and the average size was in the range of approximately 75 nm. Room temperature ferromagnetism was observed for this triple doped sample and the saturation magnetization was found to be 4.56 x 10(-3) microB/Mn atom. First-principles spin-polarized plane wave based supercell calculations, using the projector augmented wave potentials, on Mn-doped CeF3 confirmed its ferromagnetic properties. The simultaneous observation of both room temperature ferromagnetism and white light emission from doped fluoride nanoparticles reveals the complexity and uniqueness of these results.
RESUMEN
We report on the structural and magnetic properties of nanoparticles of NiGa2O4 and 5 at.% M doped (M = Mn2+, Cu2+, Co2+, Fe3+ and Tb3+) at Ga site of NiGa2O4, synthesized by gel-combustion method. The particle size, as investigated by X-ray diffraction and transmission electron microscopy, could be fine tuned by a controlled annealing process. Weak ferromagnetism becomes significant, when the particles are in the nano regime (5-7 nm). The magnetization becomes insignificant at larger particle size ( 150 nm). Cu2+ and Tb3+ doped NiGa2O4 nanoparticles showed relatively large room temperature ferromagnetism compared to other doped (Fe, Mn and Co) and undoped NiGa2O4 samples. The weak ferromagnetism observed in the nanoparticles of NiGa2O4, which is antiferromagnetic in the bulk, is due to the surface disordered states with uncompensated spins.
Asunto(s)
Galio/química , Metales/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Magnetismo , Ensayo de Materiales , Tamaño de la PartículaRESUMEN
Luminescent ZnO and Zn0.95Mg0.05O nanorods with length around 0.5 to 3 microm and diameter 100-150 nm were prepared by a facile solvothermal method. On hydriding at room temperature, a change of morphology from nanorods with aspect ratio 5-10 to particles of sizes 100 nm has been observed in both ZnO and Zn0.95Mg0.05O. While hydrided Zn0.95Mg0.05O showed an enhanced defect related green emission, the same got suppressed in hydrided ZnO. Even though it is observed that zinc vacancies are present in both as prepared ZnO and Zn0.95Mg0.05O, luminescence studies indicate that zinc vacancies get stabilized in Zn0.95Mg0.05O on hydrogenation.
Asunto(s)
Magnesio/química , Nanotubos/química , Nanotubos/ultraestructura , Óxido de Zinc/química , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de SuperficieRESUMEN
CeScO(3) was synthesized by a two-step synthesis route involving a combustion method followed by vacuum heating at 1100 degrees C in the presence of Zr sponge which acts as an oxygen getter. The compound was characterized by various techniques such as X-ray diffraction (XRD), high temperature XRD, thermogravimetry, diffuse reflectance (DR)-UV visible spectrophotometry, and Raman spectroscopy. Fluorite-type (F-type) solid solution with composition Ce(0.5)Sc(0.5)O(1.75) was observed as an intermediate during the synthesis of CeScO(3). Only by mere redox reaction was a reversible transformation between fluorite-type structure and perovskites structure observed. CeScO(3) was found as semiconducting oxide with band gap of 3.2 eV arising mainly between O p states in the valence band and Sc d and Ce d states in the conduction band with small contributions coming from Ce f and Sc p states. First-principles potential plane-wave-based calculations were performed for the band gap and its origin in CeScO(3). Photoluminescence measurement showed that CeScO(3) is a potential host material giving broad blue emission. This was further confirmed by demonstrating CeScO(3) doped with 2 mol % Tb(3+) compound as an efficient green light emitter.