Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 224(6): 1077-1085, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-33528566

RESUMEN

BACKGROUND: Newly emerged mutations within the Plasmodium falciparum chloroquine resistance transporter (PfCRT) can confer piperaquine resistance in the absence of amplified plasmepsin II (pfpm2). In this study, we estimated the prevalence of co-circulating piperaquine resistance mutations in P. falciparum isolates collected in northern Cambodia from 2009 to 2017. METHODS: The sequence of pfcrt was determined for 410 P. falciparum isolates using PacBio amplicon sequencing or whole genome sequencing. Quantitative polymerase chain reaction was used to estimate pfpm2 and pfmdr1 copy number. RESULTS: Newly emerged PfCRT mutations increased in prevalence after the change to dihydroartemisinin-piperaquine in 2010, with >98% of parasites harboring these mutations by 2017. After 2014, the prevalence of PfCRT F145I declined, being outcompeted by parasites with less resistant, but more fit PfCRT alleles. After the change to artesunate-mefloquine, the prevalence of parasites with amplified pfpm2 decreased, with nearly half of piperaquine-resistant PfCRT mutants having single-copy pfpm2. CONCLUSIONS: The large proportion of PfCRT mutants that lack pfpm2 amplification emphasizes the importance of including PfCRT mutations as part of molecular surveillance for piperaquine resistance in this region. Likewise, it is critical to monitor for amplified pfmdr1 in these PfCRT mutants, as increased mefloquine pressure could lead to mutants resistant to both drugs.


Asunto(s)
Antimaláricos/farmacología , Biomarcadores/metabolismo , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Proteínas de Transporte de Membrana/genética , Piperazinas/uso terapéutico , Proteínas Protozoarias/genética , Quinolinas/uso terapéutico , Animales , Antimaláricos/uso terapéutico , Cambodia/epidemiología , Resistencia a Medicamentos/efectos de los fármacos , Malaria Falciparum/epidemiología , Mefloquina/uso terapéutico , Mutación/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Prevalencia , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
J Pharmacol Exp Ther ; 379(2): 175-181, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34433578

RESUMEN

Cefazolin is a first-line antibiotic to treat infection related to deployment-associated blast injuries. Prior literature demonstrated a 331% increase cefazolin liver area under the curve (AUC) in mice exposed to a survivable blast compared with controls. We repeated the experiment, validated the findings, and established a semimechanistic two-compartment pharmacokinetic (PK) model with effect compartments representing the liver and skin. We found that blast statistically significantly increased the pseudo-partition coefficient to the liver by 326% (95% confidence interval: 76-737%), which corresponds to the observed 331% increase in cefazolin liver AUC described previously. To a lesser extent, plasma AUC in blasted mice increased 14-45% compared with controls. Nevertheless, the effects of blast on cefazolin PK were transient, normalizing by 10 hours after the dose. It is unclear as to how this blast effect t emporally translates to humans; however, given the short-lived effect on PK, there is insufficient evidence to recommend cefazolin dosing changes based on blast overpressure injury alone. Clinicians should be aware that cefazolin may cause drug-induced liver injury with a single dose and the risk may be higher in patients with blast overpressure injury based on our findings. SIGNIFICANCE STATEMENT: Blast exposure significantly, but transiently, alters cefazolin pharmacokinetics in mice. The questions of whether other medications or potential long-term consequences in humans need further exploration.


Asunto(s)
Antibacterianos/farmacocinética , Traumatismos por Explosión/metabolismo , Cefazolina/farmacocinética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Modelos Biológicos , Animales , Antibacterianos/toxicidad , Traumatismos por Explosión/complicaciones , Traumatismos por Explosión/patología , Cefazolina/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Presión
3.
Artículo en Inglés | MEDLINE | ID: mdl-28947471

RESUMEN

Acinetobacter baumannii is responsible for 10% of all nosocomial infections and has >50% mortality rates when causing ventilator-associated pneumonia. In this proof-of-concept study, we evaluated SPR741, an antibiotic adjuvant that permeabilizes the Gram-negative membrane, in combination with rifampin against AB5075, an extensively drug-resistant (XDR) A. baumannii strain. In standard in vitro assays and in a murine pulmonary model, we found that this drug combination can significantly reduce bacterial burden and promote animal survival despite an aggressive infection.


Asunto(s)
Infecciones por Acinetobacter/tratamiento farmacológico , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/uso terapéutico , Infección Hospitalaria/tratamiento farmacológico , Neumonía Asociada al Ventilador/tratamiento farmacológico , Polimixina B/uso terapéutico , Rifampin/uso terapéutico , Acinetobacter baumannii/patogenicidad , Animales , Infección Hospitalaria/microbiología , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana Múltiple , Ratones , Pruebas de Sensibilidad Microbiana , Neumonía Asociada al Ventilador/microbiología , Prueba de Estudio Conceptual
4.
Proc Natl Acad Sci U S A ; 110(1): 240-5, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23248304

RESUMEN

The recent emergence of artemisinin-resistant Plasmodium falciparum malaria in western Cambodia could threaten prospects for malaria elimination. Identification of the genetic basis of resistance would provide tools for molecular surveillance, aiding efforts to contain resistance. Clinical trials of artesunate efficacy were conducted in Bangladesh, in northwestern Thailand near the Myanmar border, and at two sites in western Cambodia. Parasites collected from trial participants were genotyped at 8,079 single nucleotide polymorphisms (SNPs) using a P. falciparum-specific SNP array. Parasite genotypes were examined for signatures of recent positive selection and association with parasite clearance phenotypes to identify regions of the genome associated with artemisinin resistance. Four SNPs on chromosomes 10 (one), 13 (two), and 14 (one) were significantly associated with delayed parasite clearance. The two SNPs on chromosome 13 are in a region of the genome that appears to be under strong recent positive selection in Cambodia. The SNPs on chromosomes 10 and 13 lie in or near genes involved in postreplication repair, a DNA damage-tolerance pathway. Replication and validation studies are needed to refine the location of loci responsible for artemisinin resistance and to understand the mechanism behind it; however, two SNPs on chromosomes 10 and 13 may be useful markers of delayed parasite clearance in surveillance for artemisinin resistance in Southeast Asia.


Asunto(s)
Artemisininas/farmacología , Resistencia a Medicamentos/genética , Sitios Genéticos/genética , Plasmodium falciparum/genética , Selección Genética , Asia Sudoriental , Marcadores Genéticos/genética , Genotipo , Funciones de Verosimilitud , Oportunidad Relativa , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal , Análisis de Regresión
5.
J Infect Dis ; 211(5): 670-9, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25180241

RESUMEN

BACKGROUND: The emergence of artemisinin-resistant Plasmodium falciparum in Southeast Asia threatens malaria treatment efficacy. Mutations in a kelch protein encoded on P. falciparum chromosome 13 (K13) have been associated with resistance in vitro and in field samples from Cambodia. METHODS: P. falciparum infections from artesunate efficacy trials in Bangladesh, Cambodia, Laos, Myanmar, and Vietnam were genotyped at 33 716 genome-wide single-nucleotide polymorphisms (SNPs). Linear mixed models were used to test associations between parasite genotypes and parasite clearance half-lives following artesunate treatment. K13 mutations were tested for association with artemisinin resistance, and extended haplotypes on chromosome 13 were examined to determine whether mutations arose focally and spread or whether they emerged independently. RESULTS: The presence of nonreference K13 alleles was associated with prolonged parasite clearance half-life (P = 1.97 × 10(-12)). Parasites with a mutation in any of the K13 kelch domains displayed longer parasite clearance half-lives than parasites with wild-type alleles. Haplotype analysis revealed both population-specific emergence of mutations and independent emergence of the same mutation in different geographic areas. CONCLUSIONS: K13 appears to be a major determinant of artemisinin resistance throughout Southeast Asia. While we found some evidence of spreading resistance, there was no evidence of resistance moving westward from Cambodia into Myanmar.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos , Malaria Falciparum/parasitología , Mutación , Plasmodium falciparum/efectos de los fármacos , Asia Sudoriental , Genotipo , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Polimorfismo de Nucleótido Simple , Proteínas Protozoarias/genética
6.
Antimicrob Agents Chemother ; 59(8): 4631-43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26014942

RESUMEN

Cambodia's first-line artemisinin combination therapy, dihydroartemisinin-piperaquine (DHA-PPQ), is no longer sufficiently curative against multidrug-resistant Plasmodium falciparum malaria at some Thai-Cambodian border regions. We report recent (2008 to 2013) drug resistance trends in 753 isolates from northern, western, and southern Cambodia by surveying for ex vivo drug susceptibility and molecular drug resistance markers to guide the selection of an effective alternative to DHA-PPQ. Over the last 3 study years, PPQ susceptibility declined dramatically (geomean 50% inhibitory concentration [IC50] increased from 12.8 to 29.6 nM), while mefloquine (MQ) sensitivity doubled (67.1 to 26 nM) in northern Cambodia. These changes in drug susceptibility were significantly associated with a decreased prevalence of P. falciparum multidrug resistance 1 gene (Pfmdr1) multiple copy isolates and coincided with the timing of replacing artesunate-mefloquine (AS-MQ) with DHA-PPQ as the first-line therapy. Widespread chloroquine resistance was suggested by all isolates being of the P. falciparum chloroquine resistance transporter gene CVIET haplotype. Nearly all isolates collected from the most recent years had P. falciparum kelch13 mutations, indicative of artemisinin resistance. Ex vivo bioassay measurements of antimalarial activity in plasma indicated 20% of patients recently took antimalarials, and their plasma had activity (median of 49.8 nM DHA equivalents) suggestive of substantial in vivo drug pressure. Overall, our findings suggest DHA-PPQ failures are associated with emerging PPQ resistance in a background of artemisinin resistance. The observed connection between drug policy changes and significant reduction in PPQ susceptibility with mitigation of MQ resistance supports reintroduction of AS-MQ, in conjunction with monitoring of the P. falciparum mdr1 copy number, as a stop-gap measure in areas of DHA-PPQ failure.


Asunto(s)
Antimaláricos/uso terapéutico , Resistencia a Medicamentos/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Quinolinas/uso terapéutico , Adolescente , Adulto , Anciano , Artemisininas/uso terapéutico , Cambodia , Cloroquina/uso terapéutico , Femenino , Humanos , Concentración 50 Inhibidora , Malaria Falciparum/microbiología , Masculino , Mefloquina/uso terapéutico , Proteínas de Transporte de Membrana/metabolismo , Persona de Mediana Edad , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Pruebas de Sensibilidad Parasitaria/métodos , Plasmodium falciparum/aislamiento & purificación , Plasmodium falciparum/metabolismo , Adulto Joven
7.
Malar J ; 14: 486, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26626127

RESUMEN

BACKGROUND: There is currently no standardized approach for assessing in vitro anti-malarial drug susceptibility. Potential alterations in drug susceptibility results between fresh immediate ex vivo (IEV) and cryopreserved culture-adapted (CCA) Plasmodium falciparum isolates, as well as changes in parasite genotype during culture adaptation were investigated. METHODS: The 50 % inhibitory concentration (IC50) of 12 P. falciparum isolates from Cambodia against a panel of commonly used drugs were compared using both IEV and CCA. Results were compared using both histidine-rich protein-2 ELISA (HRP-2) and SYBR-Green I fluorescence methods. Molecular genotyping and amplicon deep sequencing were also used to compare multiplicity of infection and genetic polymophisms in fresh versus culture-adapted isolates. RESULTS: IC50 for culture-adapted specimens were significantly lower compared to the original fresh isolates for both HRP-2 and SYBR-Green I assays, with greater than a 50 % decline for the majority of drug-assay combinations. There were correlations between IC50s from IEV and CCA for most drugs assays. Infections were nearly all monoclonal, with little or no change in merozoite surface protein 1 (MSP1), MSP2, glutamate-rich protein (GLURP) or apical membrane antigen 1 (AMA1) polymorphisms, nor differences in P. falciparum multidrug resistance 1 gene (PfMDR1) copy number or single nucleotide polymorphisms following culture adaptation. CONCLUSIONS: The overall IC50 reduction combined with the correlation between fresh isolates and culture-adapted drug susceptibility assays suggests the utility of both approaches, as long as there is consistency of method, and remaining mindful of possible attenuation of resistance phenotype occurring in culture. Further study should be done in higher transmission settings where polyclonal infections are prevalent.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos , Pruebas de Sensibilidad Parasitaria/métodos , Plasmodium falciparum/efectos de los fármacos , Adolescente , Adulto , Cambodia , ADN Protozoario/genética , Variación Genética , Genotipo , Humanos , Concentración 50 Inhibidora , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/aislamiento & purificación , Adulto Joven
8.
Antimicrob Agents Chemother ; 58(10): 5831-40, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25049252

RESUMEN

Novel synthetic endoperoxides are being evaluated as new components of artemisinin combination therapies (ACTs) to treat artemisinin-resistant Plasmodium falciparum malaria. We conducted blinded ex vivo activity testing of fully synthetic (OZ78 and OZ277) and semisynthetic (artemisone, artemiside, artesunate, and dihydroartemisinin) endoperoxides in the histidine-rich protein 2 enzyme-linked immunosorbent assay against 200 P. falciparum isolates from areas of artemisinin-resistant malaria in western and northern Cambodia in 2009 and 2010. The order of potency and geometric mean (GM) 50% inhibitory concentrations (IC50s) were as follows: artemisone (2.40 nM) > artesunate (8.49 nM) > dihydroartemisinin (11.26 nM) > artemiside (15.28 nM) > OZ277 (31.25 nM) > OZ78 (755.27 nM). Ex vivo activities of test endoperoxides positively correlated with dihydroartemisinin and artesunate. The isolates were over 2-fold less susceptible to dihydroartemisinin than the artemisinin-sensitive P. falciparum W2 clone and showed sensitivity comparable to those with test endoperoxides and artesunate, with isolate/W2 IC50 susceptibility ratios of <2.0. All isolates had P. falciparum chloroquine resistance transporter mutations, with negative correlations in sensitivity to endoperoxides and chloroquine. The activities of endoperoxides (artesunate, dihydroartemisinin, OZ277, and artemisone) significantly correlated with that of the ACT partner drug, mefloquine. Isolates had mutations associated with clinical resistance to mefloquine, with 35% prevalence of P. falciparum multidrug resistance gene 1 (pfmdr1) amplification and 84.5% occurrence of the pfmdr1 Y184F mutation. GM IC50s for mefloquine, lumefantrine, and endoperoxides (artesunate, dihydroartemisinin, OZ277, OZ78, and artemisone) correlated with pfmdr1 copy number. Given that current ACTs are failing potentially from reduced sensitivity to artemisinins and partner drugs, newly identified mutations associated with artemisinin resistance reported in the literature and pfmdr1 mutations should be examined for their combined contributions to emerging ACT resistance.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Compuestos Heterocíclicos con 1 Anillo/farmacología , Peróxidos/farmacología , Plasmodium falciparum/efectos de los fármacos , Compuestos de Espiro/farmacología , Artesunato , Cambodia , Cloroquina/farmacología , Pruebas de Sensibilidad Parasitaria
9.
Malar J ; 12: 217, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23802651

RESUMEN

BACKGROUND: Despite recent malaria containment and control efforts leading to reduced incidence, Cambodia remains endemic for both Plasmodium vivax and multidrug-resistant Plasmodium falciparum malaria. Little has been reported in the peer-reviewed literature regarding the burden of severe malaria (SM) in Cambodia. METHODS: Medical records for all patients admitted to the Battambang Referral Hospital (BRH) with an admitting or discharge diagnosis of SM from 2006 to 2009 (suspected SM cases) were reviewed. Those meeting the case definition of SM according to retrospective chart review and investigator assessment of probable cases, based on published national guidelines available at the time, were analysed for trends in demographics, mortality and referral patterns. RESULTS: Of the 537 suspected SM cases at BRH during the study period, 393 (73%) met published WHO criteria for SM infection. Despite limited diagnostic and treatment facilities, overall mortality was 14%, with 7% mortality in children 14 and under, but 19% in adults (60% of cases). Cerebral malaria with coma was relatively rare (17%), but mortality was disproportionately high at 35%. Mean time to hospital presentation was five days (range one to 30 days) after onset of symptoms. While patients with delays in presentation had worse outcomes, there was no excess mortality based on treatment referral times, distance travelled or residence in artemisinin-resistance containment (ARC) Zone 1 compared to Zone 2. CONCLUSIONS: Despite limitations in diagnosis and treatment, and multiple confounding co-morbidities, mortality rates at BRH were similar to reports from other countries in the region. Interventions to improve access to early diagnosis and effective treatment, combined with modest improvements in intensive care, are likely to reduce mortality further. Patients referred from Zone 1 did not have excess mortality compared to Zone 2 ARC areas. A steep decrease in SM cases and deaths observed in the first half of 2009 has since continued, indicating some success from containment efforts despite the emergence of artemisinin resistance in this area.


Asunto(s)
Malaria Falciparum/epidemiología , Malaria Falciparum/patología , Malaria Vivax/epidemiología , Malaria Vivax/patología , Adolescente , Adulto , Antimaláricos/uso terapéutico , Cambodia/epidemiología , Niño , Preescolar , Demografía , Resistencia a Medicamentos , Femenino , Humanos , Malaria Falciparum/complicaciones , Malaria Falciparum/mortalidad , Malaria Vivax/complicaciones , Malaria Vivax/mortalidad , Masculino , Plasmodium falciparum/efectos de los fármacos , Plasmodium vivax/efectos de los fármacos , Estudios Retrospectivos , Análisis de Supervivencia , Centros de Atención Terciaria , Resultado del Tratamiento , Adulto Joven
10.
Malar J ; 12: 239, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23849006

RESUMEN

BACKGROUND: Performance of the histidine-rich protein-2 enzyme-linked immunosorbent assay (HRP-2 ELISA) and malaria SYBR Green I fluorescence (MSF) drug sensitivity tests were directly compared using Plasmodium falciparum reference strains and fresh ex vivo isolates from Cambodia against a panel of standard anti-malarials. The objective was to determine which of these two common assays is more appropriate for studying drug susceptibility of "immediate ex vivo" (IEV) isolates, analysed without culture adaption, in a region of relatively low malaria transmission. METHODS: Using the HRP-2 and MSF methods, the 50% inhibitory concentration (IC50) values against a panel of malaria drugs were determined for P. falciparum reference clones (W2, D6, 3D7 and K1) and 41 IEV clinical isolates from an area of multidrug resistance in Cambodia. Comparison of the IC50 values from the two methods was made using Wilcoxon matched pair tests and Pearson's correlation. The lower limit of parasitaemia detection for both methods was determined for reference clones and IEV isolates. Since human white blood cell (WBC) DNA in clinical samples is known to reduce MSF assay sensitivity, SYBR Green I fluorescence linearity of P. falciparum samples spiked with WBCs was evaluated to assess the relative degree to which MSF sensitivity is reduced in clinical samples. RESULTS: IC50 values correlated well between the HRP-2 and MSF methods when testing either P. falciparum reference clones or IEV isolates against 4-aminoquinolines (chloroquine, piperaquine and quinine) and the quinoline methanol mefloquine (Pearson r = 0.85-0.99 for reference clones and 0.56-0.84 for IEV isolates), whereas a weaker IC50 value correlation between methods was noted when testing artemisinins against reference clones and lack of correlation when testing IEV isolates. The HRP-2 ELISA produced a higher overall success rate (90% for producing IC50 best-fit sigmoidal curves), relative to only a 40% success rate for the MSF assay, when evaluating ex vivo Cambodian isolates. Reduced sensitivity of the MSF assay is likely due to an interference of WBCs in clinical samples. CONCLUSIONS: For clinical samples not depleted of WBCs, HRP-2 ELISA is superior to the MSF assay at evaluating fresh P. falciparum field isolates with low parasitaemia (<0.2%) generally observed in Southeast Asia.


Asunto(s)
Antimaláricos/farmacología , Malaria Falciparum/parasitología , Técnicas de Diagnóstico Molecular/métodos , Plasmodium falciparum/efectos de los fármacos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Protozoos/análisis , Benzotiazoles , Cambodia , Diaminas , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Fluorescencia , Humanos , Concentración 50 Inhibidora , Masculino , Persona de Mediana Edad , Compuestos Orgánicos/metabolismo , Pruebas de Sensibilidad Parasitaria/métodos , Plasmodium falciparum/aislamiento & purificación , Proteínas , Proteínas Protozoarias/análisis , Quinolinas , Coloración y Etiquetado/métodos , Adulto Joven
11.
Malar J ; 12: 403, 2013 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-24206588

RESUMEN

BACKGROUND: Despite widespread coverage of the emergence of artemisinin resistance, relatively little is known about the parasite populations responsible. The use of PCR genotyping around the highly polymorphic Plasmodium falciparum msp1, msp2 and glurp genes has become well established both to describe variability in alleles within a population of parasites, as well as classify treatment outcome in cases of recurrent disease. The primary objective was to assess the emergence of minority parasite clones during seven days of artesunate (AS) treatment in a location with established artemisinin resistance. An additional objective was to investigate whether the classification of clinical outcomes remained valid when additional genotyping was performed. METHODS: Blood for parasite genotyping was collected from 143 adult patients presenting with uncomplicated falciparum malaria during a clinical trial of AS monotherapy in Western Cambodia. Nested allelic type-specific amplification of the genes encoding the merozoite surface proteins 1 and 2 (msp1 and msp2) and the glutamate-rich protein (glurp) was performed at baseline, daily during seven days of treatment, and again at failure. Allelic variants were analysed with respect to the size of polymorphisms using Quantity One software to enable identification of polyclonal infections. RESULTS: Considerable variation of msp2 alleles but well-conserved msp1 and glurp were identified. At baseline, 31% of infections were polyclonal for one or more genes. Patients with recurrent malaria were significantly more likely to have polyclonal infections than patients without recurrence (seven of nine versus 36 of 127, p = 0.004). Emergence of minority alleles during treatment was detected in only one of twenty-three cases defined as being artemisinin resistant. Moreover, daily genotyping did not alter the final outcome classification in any recurrent cases. CONCLUSIONS: The parasites responsible for artemisinin-resistant malaria in a clinical trial in Western Cambodia comprise the dominant clones of acute malaria infections rather than minority clones emerging during treatment. Additional genotyping during therapy was not beneficial. Disproportionately high rates of polyclonal infections in cases of recurrence suggest complex infections lead to poor treatment outcomes. Current research objectives should be broadened to include identification and follow-up of recurrent polyclonal infections so as to define their role as potential agents of emerging resistance.


Asunto(s)
Antígenos de Protozoos/genética , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adolescente , Adulto , Anciano , Animales , Artesunato , Cambodia , Femenino , Variación Genética , Genotipo , Humanos , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Plasmodium falciparum/clasificación , Plasmodium falciparum/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Adulto Joven
12.
Mil Med ; 188(Suppl 6): 271-279, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37948226

RESUMEN

INTRODUCTION: Combat injuries are complex and multimodal. Most injuries to the extremities occur because of explosive devices such as improvised explosive devices. Blast exposure dramatically increases the risk of infection in combat wounds, and there is limited available information on the best antibiotic treatments for these injuries. We previously demonstrated that mice exposed to blast displayed a delayed clearance of cefazolin from the plasma and liver; further semi-mechanistic modeling determined that cefazolin concentrations in the skin of these mice were reduced. Our objective was to investigate the effects of blast on the pharmacokinetics of antibiotics of different types used for the treatment of combat wounds in the rat model. MATERIALS AND METHODS: Male Sprague Dawley rats were exposed to blast overpressure followed by injection of a bolus of animal equivalent doses of an antibiotic (cefazolin, cefepime, ertapenem, or clindamycin) into the tail vein at 1-hour post-blast exposure. Blood was collected at predetermined time points via repeated sampling from the tail vein. Animals were also euthanized at predetermined time points, at which time liver, kidney, skin, and blood via cardiac puncture were collected. Antibiotic concentrations were determined by ultra-performance liquid chromatography-tandem mass spectrometry. RESULTS: Blast-exposed rats exhibited a similar rate of clearance compared to non-blasted rats in the blood, liver, kidney, and skin, which is inconsistent with the data regarding cefazolin in blast-exposed mice. CONCLUSIONS: Our results in rats do not recapitulate our previous observation of delayed cefazolin clearance in mice following the blast overpressure exposure. Although using rats permitted us to collect multiple blood samples from the same animals, rats may not be a suitable model for measuring the pharmacokinetics of antibiotics following blast. The interpretation of the results may be challenging because of variation in data among rat subjects in the same sample groups.


Asunto(s)
Antibacterianos , Traumatismos por Explosión , Humanos , Ratas , Masculino , Ratones , Animales , Ratas Sprague-Dawley , Antibacterianos/uso terapéutico , Traumatismos por Explosión/tratamiento farmacológico , Cefazolina/uso terapéutico , Explosiones , Modelos Animales de Enfermedad
13.
Antimicrob Agents Chemother ; 56(11): 5484-93, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22869581

RESUMEN

Artemisinin-resistant malaria along the Thailand-Cambodian border is an important public health concern, yet mechanisms of drug action and their contributions to the development of resistance are poorly understood. The pharmacokinetics and pharmacodynamics of oral artesunate monotherapy were explored in a dose-ranging trial in an area of emerging artesunate resistance in western Cambodia. We enrolled 143 evaluable subjects with uncomplicated Plasmodium falciparum malaria in an open label study of directly observed artesunate monotherapy at 3 dose levels (2, 4, and 6 mg/kg of body weight/day) for 7 days at Tasanh Health Center, Tasanh, Cambodia. Clinical outcomes were similar among the 3 groups. Wide variability in artesunate and dihydroartemisinin concentrations in plasma was observed. No significant dose-effect or concentration-effect relationships between pharmacokinetic (PK) and parasite clearance parameters were observed, though baseline parasitemia was modestly correlated with increased parasite clearance times. The overall parasite clearance times were prolonged compared with the clearance times in a previous study at this site in 2006 to 2007, but this did not persist when the evaluation was limited to subjects with a comparable artesunate dose (4 mg/kg/day) and baseline parasitemia from the two studies. Reduced plasma drug levels with higher presentation parasitemias, previously hypothesized to result from partitioning into infected red blood cells, was not observed in this population with uncomplicated malaria. Neither in vitro parasite susceptibility nor plasma drug concentrations appeared to have a direct relationship with the pharmacodynamic (PD) effects of oral artesunate on malaria parasites. While direct concentration-effect relationships were not found, it remains possible that a population PK modeling approach that allows modeling of greater dose separation might discern more-subtle relationships.


Asunto(s)
Antimaláricos/farmacocinética , Artemisininas/sangre , Artemisininas/farmacocinética , Malaria Falciparum/tratamiento farmacológico , Parasitemia/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Administración Oral , Adulto , Antimaláricos/sangre , Antimaláricos/farmacología , Artemisininas/farmacología , Artesunato , Cambodia , Esquema de Medicación , Femenino , Humanos , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Masculino , Parasitemia/sangre , Plasmodium falciparum/crecimiento & desarrollo , Índice de Severidad de la Enfermedad
14.
Malar J ; 11: 325, 2012 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-22974086

RESUMEN

BACKGROUND: Apparent emerging artemisinin-resistant Plasmodium falciparum malaria in Southeast Asia requires development of practical tools to monitor for resistant parasites. Although in vitro anti-malarial susceptibility tests are widely used, uncertainties remain regarding interpretation of P. falciparum field isolate values. METHODS: Performance parameters of the W2 P. falciparum clone (considered artemisinin "sensitive") were evaluated as a reference for the HRP-2 immediate ex vivo assay. Variability in W2 IC50s was assessed, including intra- and inter-assay variability among and between technicians in multiple experiments, over five freeze-thaw cycles, over five months of continuous culture, and before and after transport of drug-coated plates to remote field sites. Nominal drug plate concentrations of artesunate (AS) and dihydroartemisinin (DHA) were verified by LC-MS analysis. Plasmodium falciparum field isolate IC50s for DHA from subjects in an artemisinin-resistant area in Cambodia were compared with W2 susceptibility. RESULTS: Plate drug concentrations and day-to-day technical assay performance among technicians were important sources of variability for W2 IC50s within and between assays. Freeze-thaw cycles, long-term continuous culture, and transport to and from remote sites had less influence. Despite variability in W2 susceptibility, the median IC50s for DHA for Cambodian field isolates were higher (p <0.0001) than the W2 clone (3.9 nM), both for subjects with expected (less than 72 hours; 6.3 nM) and prolonged (greater or equal to 72 hours; 9.6 nM) parasite clearance times during treatment with artesunate monotherapy. CONCLUSION: The W2 reference clone improved the interpretability of field isolate susceptibility from the immediate ex vivo HRP-2 assay from areas of artemisinin resistance. Methods to increase the reproducibility of plate coating may improve overall assay interpretability and utility.


Asunto(s)
Antígenos de Protozoos/análisis , Antimaláricos/farmacología , Malaria Falciparum/parasitología , Pruebas de Sensibilidad Parasitaria/métodos , Pruebas de Sensibilidad Parasitaria/normas , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/análisis , Artemisininas/farmacología , Artesunato , Cromatografía Liquida , Medios de Cultivo/química , Humanos , Concentración 50 Inhibidora , Espectrometría de Masas , Plasmodium falciparum/aislamiento & purificación
15.
Malar J ; 11: 198, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22694953

RESUMEN

BACKGROUND: In vitro drug susceptibility assay of Plasmodium falciparum field isolates processed "immediate ex vivo" (IEV), without culture adaption, and tested using histidine-rich protein-2 (HRP-2) detection as an assay, is an expedient way to track drug resistance. METHODS: From 2005 to 2010, a HRP-2 in vitro assay assessed 451 P. falciparum field isolates obtained from subjects with malaria in western and northern Cambodia, and eastern Thailand, processed IEV, for 50% inhibitory concentrations (IC50) against seven anti-malarial drugs, including artesunate (AS), dihydroartemisinin (DHA), and piperaquine. RESULTS: In western Cambodia, from 2006 to 2010, geometric mean (GM) IC50 values for chloroquine, mefloquine, quinine, AS, DHA, and lumefantrine increased. In northern Cambodia, from 2009-2010, GM IC50 values for most drugs approximated the highest western Cambodia GM IC50 values in 2009 or 2010. CONCLUSIONS: Western Cambodia is associated with sustained reductions in anti-malarial drug susceptibility, including the artemisinins, with possible emergence, or spread, to northern Cambodia. This potential public health crisis supports continued in vitro drug IC50 monitoring of P. falciparum isolates at key locations in the region.


Asunto(s)
Antígenos de Protozoos/biosíntesis , Antimaláricos/farmacología , Resistencia a Medicamentos , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/biosíntesis , Adolescente , Adulto , Anciano , Cambodia , Niño , Preescolar , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Humanos , Concentración 50 Inhibidora , Masculino , Persona de Mediana Edad , Pruebas de Sensibilidad Parasitaria/métodos , Plasmodium falciparum/aislamiento & purificación , Tailandia , Adulto Joven
16.
APMIS ; 130(7): 436-457, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34132418

RESUMEN

Modern combat-related injuries are often associated with acute polytrauma. As a consequence of severe combat-related injuries, a dysregulated immune response results in serious infectious complications. The gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen that often causes life-threatening bloodstream, lung, bone, urinary tract, and wound infections following combat-related injuries. The rise in the number of multidrug-resistant P. aeruginosa strains has elevated its importance to civilian clinicians and military medicine. Development of novel therapeutics and treatment options for P. aeruginosa infections is urgently needed. During the process of drug discovery and therapeutic testing, in vivo testing in animal models is a critical step in the bench-to-bedside approach, and required for Food and Drug Administration approval. Here, we review current and past literature with a focus on combat injury-relevant animal models often used to understand infection development, the interplay between P. aeruginosa and the host, and evaluation of novel treatments. Specifically, this review focuses on the following animal infection models: wound, burn, bone, lung, urinary tract, foreign body, and sepsis.


Asunto(s)
Personal Militar , Infecciones por Pseudomonas , Infección de Heridas , Animales , Modelos Animales de Enfermedad , Humanos , Modelos Animales , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/fisiología , Infección de Heridas/tratamiento farmacológico
17.
Mil Med ; 187(Suppl 2): 42-51, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35512375

RESUMEN

INTRODUCTION: During the wars in Iraq and Afghanistan, increased incidence of multidrug-resistant (MDR) organisms, as well as polymicrobial wounds and infections, complicated the management of combat trauma-related infections. Multidrug resistance and wound microbiology are a research focus of the Trauma Infectious Disease Outcomes Study (TIDOS), an Infectious Disease Clinical Research Program, Uniformed Services University, research protocol. To conduct comprehensive microbiological research with the goal of improving the understanding of the complicated etiology of wound infections, the TIDOS MDR and Virulent Organisms Trauma Infections Initiative (MDR/VO Initiative) was established as a collaborative effort with the Brooke Army Medical Center, Naval Medical Research Center, U.S. Army Institute of Surgical Research, and Walter Reed Army Institute of Research. We provide a review of the TIDOS MDR/VO Initiative and summarize published findings. METHODS: Antagonism and biofilm formation of commonly isolated wound bacteria (e.g., ESKAPE pathogens-Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), antimicrobial susceptibility patterns, and clinical outcomes are being examined. Isolates collected from admission surveillance swabs, as part of infection control policy, and clinical infection workups were retained in the TIDOS Microbiological Repository and associated clinical data in the TIDOS database. RESULTS: Over the TIDOS study period (June 2009 to December 2014), more than 8,300 colonizing and infecting isolates were collected from military personnel injured with nearly one-third of isolates classified as MDR. At admission to participating U.S. military hospitals, 12% of wounded warriors were colonized with MDR Gram-negative bacilli. Furthermore, 27% of 913 combat casualties with ≥1 infection during their trauma hospitalization had MDR Gram-negative bacterial infections. Among 335 confirmed combat-related extremity wound infections (2009-2012), 61% were polymicrobial and comprised various combinations of Gram-negative and Gram-positive bacteria, yeast, fungi, and anaerobes. Escherichia coli was the most common Gram-negative bacilli isolated from clinical workups, as well as the most common colonizing MDR secondary to extended-spectrum ß-lactamase resistance. Assessment of 479 E. coli isolates collected from wounded warriors found 188 pulsed-field types (PFTs) from colonizing isolates and 54 PFTs from infecting isolates without significant overlap across combat theaters, military hospitals, and study years. A minority of patients with colonizing E. coli isolates developed subsequent infections with the same E. coli strain. Enterococcus spp. were most commonly isolated from polymicrobial wound infections (53% of 204 polymicrobial cultures). Patients with Enterococcus infections were severely injured with a high proportion of lower extremity amputations and genitourinary injuries. Approximately 65% of polymicrobial Enterococcus infections had other ESKAPE organisms isolated. As biofilms have been suggested as a cause of delayed wound healing, wound infections with persistent recovery of bacteria (isolates of same organism collected ≥14 days apart) and nonrecurrent bacterial isolates were assessed. Biofilm production was significantly associated with recurrent bacteria isolation (97% vs. 59% with nonrecurrent isolates; P < 0.001); however, further analysis is needed to confirm biofilm formation as a predictor of persistent wound infections. CONCLUSIONS: The TIDOS MDR/VO Initiative provides comprehensive and detailed data of major microbial threats associated with combat-related wound infections to further the understanding of wound etiology and potentially identify infectious disease countermeasures, which may lead to improvements in combat casualty care.


Asunto(s)
Infecciones Bacterianas , Enfermedades Transmisibles , Infección de Heridas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Infecciones Bacterianas/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple , Enterococcus , Escherichia coli , Bacterias Gramnegativas , Hospitales Militares , Humanos , Pruebas de Sensibilidad Microbiana , Estados Unidos/epidemiología , Infección de Heridas/tratamiento farmacológico
18.
Front Bioeng Biotechnol ; 10: 821169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392409

RESUMEN

Explosive devices, either conventional or improvised, are common sources of injuries during combat, civil unrest, and terror attacks, resulting in trauma from exposure to blast. A blast wave (BW), a near-instantaneous rise in pressure followed by a negative pressure, propagates through the body in milliseconds and can affect physiology for days/months after exposure. Epidemiological data show that blast-related casualties result in significantly higher susceptibility to wound infections, suggesting long-lasting immune modulatory effects from blast exposure. The mechanisms involved in BW-induced immune changes are poorly understood. We evaluated the effects of BW on the immune system using an established murine model. Animals were exposed to BWs (using an Advanced Blast Simulator), followed by longitudinally sampling for 14 days. Blood, bone marrow, and spleen were analyzed for changes in the 1) complete blood count (CBC), and 2) composition of bone marrow cells (BMC) and splenocytes, and 3) concentrations of systemic cytokines/chemokines. Our data demonstrate that BW results in transient bone marrow failure and long-term changes in the frequency and profile of progenitor cell populations. Viability progressively decreased in hematopoietic stem cells and pluripotent progenitor cells. Significant decrease of CD4+ T cells in the spleen indicates reduced functionality of adaptive immune system. Dynamic changes in the concentrations of several cytokines and chemokines such as IL-1α and IL-17 occurred potentially contributing to dysregulation of immune response after trauma. This work lays the foundation for identifying the potential mechanisms behind BW's immunosuppressive effects to inform the recognition of this compromised status is crucial for the development of therapeutic interventions for infections to reduce recovery time of wounded patients injured by explosive devices.

19.
BMC Public Health ; 11 Suppl 2: S9, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21388569

RESUMEN

Vector-borne infections (VBI) are defined as infectious diseases transmitted by the bite or mechanical transfer of arthropod vectors. They constitute a significant proportion of the global infectious disease burden. United States (U.S.) Department of Defense (DoD) personnel are especially vulnerable to VBIs due to occupational contact with arthropod vectors, immunological naiveté to previously unencountered pathogens, and limited diagnostic and treatment options available in the austere and unstable environments sometimes associated with military operations. In addition to the risk uniquely encountered by military populations, other factors have driven the worldwide emergence of VBIs. Unprecedented levels of global travel, tourism and trade, and blurred lines of demarcation between zoonotic VBI reservoirs and human populations increase vector exposure. Urban growth in previously undeveloped regions and perturbations in global weather patterns also contribute to the rise of VBIs. The Armed Forces Health Surveillance Center-Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) and its partners at DoD overseas laboratories form a network to better characterize the nature, emergence and growth of VBIs globally. In 2009 the network tested 19,730 specimens from 25 sites for Plasmodium species and malaria drug resistance phenotypes and nearly another 10,000 samples to determine the etiologies of non-Plasmodium species VBIs from regions spanning from Oceania to Africa, South America, and northeast, south and Southeast Asia. This review describes recent VBI-related epidemiological studies conducted by AFHSC-GEIS partner laboratories within the OCONUS DoD laboratory network emphasizing their impact on human populations.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Salud Global , Malaria/epidemiología , Medicina Militar , Vigilancia de Guardia , Animales , Vectores Artrópodos , Enfermedades Transmisibles Emergentes/transmisión , Resistencia a Medicamentos , Humanos , Estados Unidos , Zoonosis
20.
Pharmaceuticals (Basel) ; 14(3)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668899

RESUMEN

Multidrug-resistant (MDR) Pseudomonas aeruginosa infections pose a serious health threat. Bacteriophage-antibiotic combination therapy is a promising candidate for combating these infections. A 5-phage P. aeruginosa cocktail, PAM2H, was tested in combination with antibiotics (ceftazidime, ciprofloxacin, gentamicin, meropenem) to determine if PAM2H enhances antibiotic activity. Combination treatment in vitro resulted in a significant increase in susceptibility of MDR strains to antibiotics. Treatment with ceftazidime (CAZ), meropenem, gentamicin, or ciprofloxacin in the presence of the phage increased the number of P. aeruginosa strains susceptible to these antibiotics by 63%, 56%, 31%, and 81%, respectively. Additionally, in a mouse dorsal wound model, seven of eight mice treated with a combination of CAZ and PAM2H for three days had no detectable bacteria remaining in their wounds on day 4, while all mice treated with CAZ or PAM2H alone had ~107 colony forming units (CFU) remaining in their wounds. P. aeruginosa recovered from mouse wounds post-treatment showed decreased virulence in a wax worm model, and DNA sequencing indicated that the combination treatment prevented mutations in genes encoding known phage receptors. Treatment with PAM2H in combination with antibiotics resulted in the re-sensitization of P. aeruginosa to antibiotics in vitro and a synergistic reduction in bacterial burden in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA