Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Nutr ; 153(1): 96-105, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36913483

RESUMEN

BACKGROUND: Natural products rich in polyphenols have been shown to lower plasma trimethylamine-n-oxide (TMAO) known for its proatherogenic effects by modulating the intestinal microbiota. OBJECTIVES: We aimed to determine the impact of Fruitflow, a water-soluble tomato extract, on TMAO, fecal microbiota, and plasma and fecal metabolites. METHODS: Overweight and obese adults (n = 22, BMI 28-35 kg/m2) were included in a double-blind, placebo-controlled, cross-over study receiving 2×150 mg Fruitflow per day or placebo (maltodextrin) for 4 wk with a 6-week wash-out between interventions. Stool, blood, and urine samples were collected to assess changes in plasma TMAO (primary outcome) as well as fecal microbiota, fecal and plasma metabolites, and urine TMAO (secondary outcomes). In a subgroup (n = 9), postprandial TMAO was evaluated following a choline-rich breakfast (∼450 mg). Statistical methods included paired t-tests or Wilcoxon signed rank tests and permutational multivariate analysis of variance. RESULTS: Fruitflow, but not placebo, reduced fasting levels of plasma (-1.5 µM, P ≤ 0.05) and urine (-19.1 µM, P ≤ 0.01) TMAO as well as plasma lipopolysaccharides (-5.3 ng/mL, P ≤ 0.05) from baseline to the end of intervention. However, these changes were significant only for urine TMAO levels when comparing between the groups (P ≤ 0.05). Changes in microbial beta, but not alpha, diversity paralleled this with a significant difference in Jaccard distance-based Principal Component (P ≤ 0.05) as well as decreases in Bacteroides, Ruminococccus, and Hungatella and increases in Alistipes when comparing between and within groups (P ≤ 0.05, respectively). There were no between-group differences in SCFAs and bile acids (BAs) in both faces and plasma but several changes within groups such as an increase in fecal cholic acid or plasma pyruvate with Fruitflow (P ≤ 0.05, respectively). An untargeted metabolomic analysis revealed TMAO as the most discriminant plasma metabolite between groups (P ≤ 0.05). CONCLUSIONS: Our results support earlier findings that polyphenol-rich extracts can lower plasma TMAO in overweight and obese adults related to gut microbiota modulation. This trial was registered at clinicaltrials.gov as NCT04160481 (https://clinicaltrials.gov/ct2/show/NCT04160481?term= Fruitflow&draw= 2&rank= 2).


Asunto(s)
Microbioma Gastrointestinal , Solanum lycopersicum , Adulto , Humanos , Sobrepeso , Estudios Cruzados , Obesidad , Metilaminas/metabolismo , Óxidos
2.
Chem Senses ; 43(4): 261-272, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29514200

RESUMEN

Despite long and intense research, some fundamental questions regarding representation of taste information in the brain still remain unanswered. This might in part be due to shortcomings of the established methods that limit the researcher either to thorough characterization of few elements or to analyze the response of the entirety of neurons to only one stimulus. To overcome these restrictions, we evaluate the use of the immediate early gene Arc as a neuronal activity marker in the early neural structures of the taste pathway, the nodose/petrosal ganglion (NPG) and the nucleus of the solitary tract (NTS). Responses of NPG and NTS neurons were limited to substances that taste bitter to humans and are avoided by mice. Arc-expressing cells were concentrated in the rostromedial part of the dorsal NTS suggesting a role in gustatory processing. The use of Arc as a neuronal activity marker has several advantages, primarily the possibility to analyze the response of large numbers of neurons while using more than one stimulus makes Arc an interesting new tool for research in the early stages of taste processing.


Asunto(s)
Agentes Aversivos/farmacología , Proteínas del Citoesqueleto/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Ganglio Nudoso/metabolismo , Núcleo Solitario/metabolismo , Gusto/fisiología , Animales , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Proteínas del Citoesqueleto/genética , Procesamiento de Imagen Asistido por Computador , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Ganglio Nudoso/efectos de los fármacos , Núcleo Solitario/efectos de los fármacos , Edulcorantes/farmacología
3.
Int J Mol Sci ; 18(8)2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28809797

RESUMEN

Modulation between sleep and wake states is controlled by a number of heterogeneous neuron populations. Due to the topological proximity and genetic co-localization of the neurons underlying sleep-wake state modulation optogenetic methods offer a significant improvement in the ability to benefit from both the precision of genetic targeting and millisecond temporal control. Beginning with an overview of the neuron populations mediating arousal, this review outlines the progress that has been made in the investigation of arousal circuits since the incorporation of optogenetic techniques and the first in vivo application of optogenetic stimulation in hypocretin neurons in the lateral hypothalamus. This overview is followed by a discussion of the future progress that can be made by incorporating more recent technological developments into the research of neural circuits.


Asunto(s)
Nivel de Alerta/fisiología , Hipotálamo/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Optogenética/métodos , Animales , Humanos , Hipotálamo/citología , Red Nerviosa/citología , Neuronas/citología
4.
Commun Biol ; 6(1): 74, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658362

RESUMEN

Neurons in the lateral hypothalamus expressing the neuropeptide Hypocretin, also known as orexin, are known critical modulators of arousal stability. However, their role in the different components of the arousal construct such as attention and decision making is poorly understood. Here we study Hypocretin neuronal circuit dynamics during stop action impulsivity in a Go/NoGo task in mice. We show that Hypocretin neuronal activity correlates with anticipation of reward. We then assessed the causal role of Hypocretin neuronal activity using optogenetics in a Go/NoGo task. We show that stimulation of Hypocretin neurons during the cue period dramatically increases the number of premature responses. These effects are mimicked by amphetamine, reduced by atomoxetine, a norepinephrine uptake inhibitor, and blocked by a Hypocretin receptor 1 selective antagonist. We conclude that Hypocretin neurons have a key role in the integration of salient stimuli during wakefulness to produce appropriate and timely responses to rewarding and aversive cues.


Asunto(s)
Hipotálamo , Optogenética , Ratones , Animales , Orexinas , Péptidos y Proteínas de Señalización Intracelular , Neuronas/fisiología , Conducta Impulsiva
5.
Front Neurol ; 9: 413, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29928253

RESUMEN

The lateral hypothalamus is comprised of a heterogeneous mix of neurons that serve to integrate and regulate sleep, feeding, stress, energy balance, reward, and motivated behavior. Within these populations, the hypocretin/orexin neurons are among the most well studied. Here, we provide an overview on how these neurons act as a central hub integrating sensory and physiological information to tune arousal and motivated behavior accordingly. We give special attention to their role in sleep-wake states and conditions of hyper-arousal, as is the case with stress-induced anxiety. We further discuss their roles in feeding, drug-seeking, and sexual behavior, which are all dependent on the motivational state of the animal. We further emphasize the application of powerful techniques, such as optogenetics, chemogenetics, and fiber photometry, to delineate the role these neurons play in lateral hypothalamic functions.

6.
Front Syst Neurosci ; 11: 50, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28729827

RESUMEN

The lateral hypothalamus (LH) plays an important role in many motivated behaviors, sleep-wake states, food intake, drug-seeking, energy balance, etc. It is also home to a heterogeneous population of neurons that express and co-express multiple neuropeptides including hypocretin (Hcrt), melanin-concentrating hormone (MCH), cocaine- and amphetamine-regulated transcript (CART) and neurotensin (NT). These neurons project widely throughout the brain to areas such as the locus coeruleus, the bed nucleus of the stria terminalis, the amygdala and the ventral tegmental area (VTA). Lateral hypothalamic projections to the VTA are believed to be important for driving behavior due to the involvement of dopaminergic reward circuitry. The purpose of this article is to review current knowledge regarding the lateral hypothalamic connections to the VTA and the role they play in driving these behaviors.

7.
Pharmacol Biochem Behav ; 148: 15-20, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27180106

RESUMEN

Leptin has been shown to affect energy homeostasis, learning and memory, and some models of anxiolytic action. However, leptin has produced inconsistent results in previous non-operant behavioural tests of anxiety. Here, we test the anxiolytic potential of leptin in an operant paradigm that has produced positive results across all classes of anxiolytic so far tested. Rats were tested in the Fixed Interval 60 Seconds (FI60) task following administration of 0/0.5/1.0mg/kg (i.p.) leptin or an active anxiolytic control of 5mg/kg (i.p.) chlordiazepoxide (CDP). By the end of the 14days of testing in the FI60 task, 0.5mg/kg leptin released suppressed responding in a manner similar to CDP, and 1.0mg/kg leptin produced a relative depression in responding, a similar outcome pattern to previously tested 5HT-agonist anxiolytics. This suggests that leptin behaves similarly to established serotonergic anxiolytics such as buspirone and fluoxetine; with the delay in development of effect during testing, and the inverted-U dose-response curve explaining the inconsistent behaviour of leptin in behavioural tests of anxiety, as this type of pattern is common to serotonergic anxiolytics.


Asunto(s)
Ansiolíticos/farmacología , Leptina/farmacología , Animales , Clordiazepóxido/farmacología , Relación Dosis-Respuesta a Droga , Masculino , Ratas , Ratas Sprague-Dawley
8.
Front Behav Neurosci ; 9: 61, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25814943

RESUMEN

The hippocampal formation plays a critical role in the generation of episodic memory. While the encoding of the spatial and contextual components of memory have been extensively studied, how the hippocampus encodes temporal information, especially at long time intervals, is less well understood. The activity of place cells in hippocampus has previously been shown to be modulated at a circadian time-scale, entrained by a behavioral stimulus, but not entrained by light. The experimental procedures used in the previous study of this phenomenon, however, necessarily conflated two alternative entraining stimuli, the exposure to the recording environment and the availability of food, making it impossible to distinguish between these possibilities. Here we demonstrate that the frequency of theta-band hippocampal EEG varies with a circadian period in freely moving animals and that this periodicity mirrors changes in the firing rate of hippocampal neurons. Theta activity serves, therefore, as a proxy of circadian-modulated hippocampal neuronal activity. We then demonstrate that the frequency of hippocampal theta driven by stimulation of the reticular formation also varies with a circadian period. Because this effect can be observed without having to feed the animal to encourage movement we were able to identify what stimulus entrains the circadian oscillation. We show that with reticular-activated recordings started at various times of the day the frequency of theta varies quasi-sinusoidally with a 25 h period and phase-aligned when referenced to the animal's regular feeding time, but not the recording start time. Furthermore, we show that theta frequency consistently varied with a circadian period when the data obtained from repeated recordings started at various times of the day were referenced to the start of food availability in the recording chamber. This pattern did not occur when data were referenced to the start of the recording session or to the actual time of day when this was not also related to feeding time. This double dissociation demonstrates that hippocampal theta is modulated with a circadian timescale, and that this modulation is strongly entrained by food. One interpretation of this finding is that the hippocampus is responsive to a food entrainable oscillator (FEO) that might modulate foraging behavior over circadian periods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA