Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208139

RESUMEN

Glioblastoma is the most malignant brain tumor among adults. Despite multimodality treatment, it remains incurable, mainly because of its extensive heterogeneity and infiltration in the brain parenchyma. Recent evidence indicates dysregulation of the expression of the Promyelocytic Leukemia Protein (PML) in primary Glioblastoma samples. PML is implicated in various ways in cancer biology. In the brain, PML participates in the physiological migration of the neural progenitor cells, which have been hypothesized to serve as the cell of origin of Glioblastoma. The role of PML in Glioblastoma progression has recently gained attention due to its controversial effects in overall Glioblastoma evolution. In this work, we studied the role of PML in Glioblastoma pathophysiology using the U87MG cell line. We genetically modified the cells to conditionally overexpress the PML isoform IV and we focused on its dual role in tumor growth and invasive capacity. Furthermore, we targeted a PML action mediator, the Enhancer of Zeste Homolog 2 (EZH2), via the inhibitory drug DZNeP. We present a combined in vitro-in silico approach, that utilizes both 2D and 3D cultures and cancer-predictive computational algorithms, in order to differentiate and interpret the observed biological results. Our overall findings indicate that PML regulates growth and invasion through distinct cellular mechanisms. In particular, PML overexpression suppresses cell proliferation, while it maintains the invasive capacity of the U87MG Glioblastoma cells and, upon inhibition of the PML-EZH2 pathway, the invasion is drastically eliminated. Our in silico simulations suggest that the underlying mechanism of PML-driven Glioblastoma physiology regulates invasion by differential modulation of the cell-to-cell adhesive and diffusive capacity of the cells. Elucidating further the role of PML in Glioblastoma biology could set PML as a potential molecular biomarker of the tumor progression and its mediated pathway as a therapeutic target, aiming at inhibiting cell growth and potentially clonal evolution regarding their proliferative and/or invasive phenotype within the heterogeneous tumor mass.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proteína de la Leucemia Promielocítica/metabolismo , Línea Celular Tumoral , Proliferación Celular , Simulación por Computador , Humanos , Modelos Biológicos , Invasividad Neoplásica , Esferoides Celulares/patología
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 6142-6145, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28269654

RESUMEN

Anti-cancer therapy efficacy in solid tumors mainly depends on drug transportation through the vasculature system and the extracellular matrix, on diffusion gradients and clonal heterogeneity within the tumor mass, as well as on the responses of the individual tumor cells to drugs and their interactions with each other and their local microenvironment. In this work, we develop a mathematical predictive model for tumor growth and drug response based on 3D spheroids experiments that possess several in vivo features of tumors and are considered better for drug screening. The model takes into account the diffusion gradients of both oxygen and drug through the tumor volume, describes the tumor population at cell level and assumes a simple underlying cellular dose-response curve that is translated to a cell death probability. The model shows that although the endpoint tumor regression can be well approximated, the effects of the drug on cell fate necessitate a more sophisticated model to explain the temporal evolution of tumor regression and more quantitative information regarding the number and topology of dead and living cells, which is highly important for in vivo clinical relevant predictions. The model is built in a way that can be constrained by experimentally derived set of parameters and is capable of accommodating cell heterogeneity, sub-cellular regulatory mechanisms and drug-induced signaling cascades, as well as additional mechanisms of adapted resistance.


Asunto(s)
Ensayos de Selección de Medicamentos Antitumorales/métodos , Esferoides Celulares/efectos de los fármacos , Técnicas de Cultivo de Célula , Difusión , Humanos , Modelos Teóricos , Neoplasias/tratamiento farmacológico , Oxígeno/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA