Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Genome Res ; 32(1): 162-174, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34815308

RESUMEN

Determination of eukaryotic transcription start sites (TSSs) has been based on methods that require the cap structure at the 5' end of transcripts derived from Pol II RNA polymerase. Consequently, these methods do not reveal TSSs derived from the other RNA polymerases that also play critical roles in various cell functions. To address this limitation, we developed ReCappable-seq, which comprehensively identifies TSS for both Pol II and non-Pol II transcripts at single-nucleotide resolution. The method relies on specific enzymatic exchange of 5' m7G caps and 5' triphosphates with a selectable tag. When applied to human transcriptomes, ReCappable-seq identifies Pol II TSSs that are in agreement with orthogonal methods such as CAGE. Additionally, ReCappable-seq reveals a rich landscape of TSSs associated with Pol III transcripts that have not previously been amenable to study at genome-wide scale. Novel TSS from non-Pol II transcription can be located in the nuclear and mitochondrial genomes. ReCappable-seq interrogates the regulatory landscape of coding and noncoding RNA concurrently and enables the classification of epigenetic profiles associated with Pol II and non-Pol II TSS.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , ARN Polimerasa II , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN no Traducido , Sitio de Iniciación de la Transcripción , Transcriptoma
2.
RNA ; 28(8): 1144-1155, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35680168

RESUMEN

Advances in mRNA synthesis and lipid nanoparticles technologies have helped make mRNA therapeutics and vaccines a reality. The 5' cap structure is a crucial modification required to functionalize synthetic mRNA for efficient protein translation in vivo and evasion of cellular innate immune responses. The extent of 5' cap incorporation is one of the critical quality attributes in mRNA manufacturing. RNA cap analysis involves multiple steps: generation of predefined short fragments from the 5' end of the kilobase-long synthetic mRNA molecules using RNase H, a ribozyme or a DNAzyme, enrichment of the 5' cleavage products, and LC-MS intact mass analysis. In this paper, we describe (1) a framework to design site-specific RNA cleavage using RNase H; (2) a method to fluorescently label the RNase H cleavage fragments for more accessible readout methods such as gel electrophoresis or high-throughput capillary electrophoresis; (3) a simplified method for post-RNase H purification using desthiobiotinylated oligonucleotides and streptavidin magnetic beads followed by elution using water. By providing a design framework for RNase H-based RNA 5' cap analysis using less resource-intensive analytical methods, we hope to make RNA cap analysis more accessible to the scientific community.


Asunto(s)
Liposomas , Ribonucleasa H , Nanopartículas , Caperuzas de ARN/genética , ARN Mensajero/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo
3.
RNA ; 28(2): 162-176, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728536

RESUMEN

Nanopore sequencing devices read individual RNA strands directly. This facilitates identification of exon linkages and nucleotide modifications; however, using conventional direct RNA nanopore sequencing, the 5' and 3' ends of poly(A) RNA cannot be identified unambiguously. This is due in part to RNA degradation in vivo and in vitro that can obscure transcription start and end sites. In this study, we aimed to identify individual full-length human RNA isoforms among ∼4 million nanopore poly(A)-selected RNA reads. First, to identify RNA strands bearing 5' m7G caps, we exchanged the biological cap for a modified cap attached to a 45-nt oligomer. This oligomer adaptation method improved 5' end sequencing and ensured correct identification of the 5' m7G capped ends. Second, among these 5'-capped nanopore reads, we screened for features consistent with a 3' polyadenylation site. Combining these two steps, we identified 294,107 individual high-confidence full-length RNA scaffolds from human GM12878 cells, most of which (257,721) aligned to protein-coding genes. Of these, 4876 scaffolds indicated unannotated isoforms that were often internal to longer, previously identified RNA isoforms. Orthogonal data for m7G caps and open chromatin, such as CAGE and DNase-HS seq, confirmed the validity of these high-confidence RNA scaffolds.


Asunto(s)
Isoformas de ARN/química , ARN Mensajero/química , Línea Celular Tumoral , Humanos , Secuenciación de Nanoporos/métodos , Señales de Poliadenilación de ARN 3' , Isoformas de ARN/genética , ARN Mensajero/genética , Transcriptoma
4.
Nucleic Acids Res ; 50(6): 3475-3489, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35244721

RESUMEN

The SARS-CoV-2 virus has a complex transcriptome characterised by multiple, nested subgenomic RNAsused to express structural and accessory proteins. Long-read sequencing technologies such as nanopore direct RNA sequencing can recover full-length transcripts, greatly simplifying the assembly of structurally complex RNAs. However, these techniques do not detect the 5' cap, thus preventing reliable identification and quantification of full-length, coding transcript models. Here we used Nanopore ReCappable Sequencing (NRCeq), a new technique that can identify capped full-length RNAs, to assemble a complete annotation of SARS-CoV-2 sgRNAs and annotate the location of capping sites across the viral genome. We obtained robust estimates of sgRNA expression across cell lines and viral isolates and identified novel canonical and non-canonical sgRNAs, including one that uses a previously un-annotated leader-to-body junction site. The data generated in this work constitute a useful resource for the scientific community and provide important insights into the mechanisms that regulate the transcription of SARS-CoV-2 sgRNAs.


Asunto(s)
COVID-19 , Nanoporos , ARN Guía de Kinetoplastida/química , COVID-19/genética , Genoma Viral/genética , Humanos , Caperuzas de ARN , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética
5.
RNA ; 26(3): 345-360, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900329

RESUMEN

The use of synthetic RNA for therapeutics requires that the in vitro synthesis process be robust and efficient. The technology used for the synthesis of these in vitro-transcribed RNAs, predominantly using phage RNA polymerases (RNAPs), is well established. However, transcripts synthesized with RNAPs are known to display an immune-stimulatory activity in vivo that is often undesirable. Previous studies have identified double-stranded RNA (dsRNA), a major by-product of the in vitro transcription (IVT) process, as a trigger of cellular immune responses. Here we describe the characterization of a high-temperature IVT process using thermostable T7 RNAPs to synthesize functional mRNAs that demonstrate reduced immunogenicity without the need for a post-synthesis purification step. We identify features that drive the production of two kinds of dsRNA by-products-one arising from 3' extension of the run-off product and one formed by the production of antisense RNAs-and demonstrate that at a high temperature, T7 RNAP has reduced 3'-extension of the run-off product. We show that template-encoded poly(A) tailing does not affect 3'-extension but reduces the formation of the antisense RNA by-products. Combining high-temperature IVT with template-encoded poly(A) tailing prevents the formation of both kinds of dsRNA by-products generating functional mRNAs with reduced immunogenicity.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , ARN sin Sentido/biosíntesis , ARN Bicatenario/genética , ARN/genética , Bacteriófago T7/enzimología , Bacteriófago T7/genética , Inmunidad Celular/genética , ARN/biosíntesis , ARN sin Sentido/genética , ARN Mensajero/genética , Transcripción Genética
6.
Molecules ; 18(10): 13020-6, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24145794

RESUMEN

A competitive immunoassay for S-adenosyl-L-homocysteine (SAH) has been used in the clinical test for homocysteine via an enzymatic conversion reaction. Since S-adenosyl-l-homocysteine is a relatively unstable compound, we have used peptide library phage display to select a new mimotope peptide that interacts with the anti-SAH antibody. By immobilizing the synthetic peptide on solid phase as a competitive surrogate for SAH, we demonstrate its utility in a competitive ELISA assay. The linear range of the assay for SAH was 0.4-6.4 µM, in good correlation to the conventional assay using an SAH-conjugated plate. Our results show that the mimotope peptide has potential to substitute for SAH in immunoassays.


Asunto(s)
Oligopéptidos/química , S-Adenosilhomocisteína/química , Secuencia de Aminoácidos , Anticuerpos Monoclonales/química , Unión Competitiva , Ensayo de Inmunoadsorción Enzimática , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Imitación Molecular , Oligopéptidos/inmunología , Biblioteca de Péptidos , Unión Proteica , S-Adenosilhomocisteína/inmunología
7.
PLoS One ; 18(7): e0286435, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37471401

RESUMEN

We report here the first occurrence of an adenosine deaminase-related growth factor (ADGF) that deaminates adenosine 5' monophosphate (AMP) in preference to adenosine. The ADGFs are a group of secreted deaminases found throughout the animal kingdom that affect the extracellular concentration of adenosine by converting it to inosine. The AMP deaminase studied here was first isolated and biochemically characterized from the roman snail Helix pomatia in 1983. Determination of the amino acid sequence of the AMP deaminase enabled sequence comparisons to protein databases and revealed it as a member of the ADGF family. Cloning and expression of its cDNA in Pichia pastoris allowed the comparison of the biochemical characteristics of the native and recombinant forms of the enzyme and confirmed they correspond to the previously reported activity. Uncharacteristically, the H. pomatia AMP deaminase was determined to be dissimilar to the AMP deaminase family by sequence comparison while demonstrating similarity to the ADGFs despite having AMP as its preferred substrate rather than adenosine.


Asunto(s)
AMP Desaminasa , Animales , Adenosina Desaminasa/metabolismo , Adenosina/metabolismo , Moluscos/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Adenosina Monofosfato
8.
PLoS One ; 17(10): e0276315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36251663

RESUMEN

The luciferin sulfokinase (coelenterazine sulfotransferase) of Renilla was previously reported to activate the storage form, luciferyl sulfate (coelenterazine sulfate) to luciferin (coelenterazine), the substrate for the luciferase bioluminescence reaction. The gene coding for the coelenterazine sulfotransferase has not been identified. Here we used a combined proteomic/transcriptomic approach to identify and clone the sulfotransferase cDNA. Multiple isoforms of coelenterazine sulfotransferase were identified from the anthozoan Renilla muelleri by intersecting its transcriptome with the LC-MS/MS derived peptide sequences of coelenterazine sulfotransferase purified from Renilla. Two of the isoforms were expressed in E. coli, purified, and partially characterized. The encoded enzymes display sulfotransferase activity that is comparable to that of the native sulfotransferase isolated from Renilla reniformis that was reported in 1970. The bioluminescent assay for sensitive detection of 3'-phosphoadenosine 5'-phosphate (PAP) using the recombinant sulfotransferase is demonstrated.


Asunto(s)
Escherichia coli , Proteómica , Animales , Arilsulfotransferasa , Cromatografía Liquida , ADN Complementario , Escherichia coli/genética , Imidazoles , Luciferasas/genética , Mediciones Luminiscentes , Pirazinas , Renilla/genética , Sulfatos , Sulfotransferasas/genética , Espectrometría de Masas en Tándem
9.
RNA ; 15(5): 984-91, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19264675

RESUMEN

Ribonuclease III (RNase III) represents a highly conserved family of double-strand-specific endoribonucleases that are important for RNA processing and post-transcriptional gene regulation in both prokaryotes and eukaryotes. We constructed a single amino acid substitution (E38A) of RNase III that shows a unique and useful enzymatic activity. It produces a dsRNA product of a discrete size migrating as 23 base pairs (bp) when given a long dsRNA as a substrate in an easy-to-control reaction. We demonstrate that the RNase III(E38A) mutant produces the 23-bp dsRNA product by making a double-strand cleavage of the long dsRNA substrate with the product being protected from further digestion. Using the hairpin RNA R1.1 as a substrate, RNase III(E38A) cleaves at the primary site and remains bound to the RNA, thereby preventing cleavage at the secondary site. The 23-bp dsRNA product is demonstrated to be a pool of dsRNAs representative of the long dsRNA substrate and has RNA interference activity in mammalian tissue culture transfection experiments. The RNA interference activity suggests that the 23-bp dsRNA product has typical 2-nucleotide 3' overhangs and behaves as siRNA thereby making it a useful tool in RNA interference experiments.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , ARN Bicatenario/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Sustitución de Aminoácidos , Secuencia de Bases , Conformación de Ácido Nucleico , Interferencia de ARN , ARN Bicatenario/química
10.
Dev Biol ; 328(2): 541-51, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19389369

RESUMEN

Ecdysone signaling plays key roles in Drosophila oogenesis, as its activity is required at multiple steps during egg chamber maturation. Recently, its involvement has been reported on eggshell production by controlling chorion gene transcription and amplification. Here, we present evidence that ecdysone signaling also controls the expression of the eggshell gene VM32E, whose product is a component of vitelline membrane and endochorion layers. Specifically blocking the function of the different Ecdysone receptor (EcR) isoforms we demonstrate that EcR-B1 is responsible for ecdysone-mediated VM32E transcriptional regulation. Moreover, we show that the EcR partner Ultraspiracle (Usp) is also necessary for VM32E expression. By analyzing the activity of specific VM32E regulatory regions in usp(2) clones we identify the promoter region mediating ecdysone-dependent VM32E expression. By in vitro binding assay and site-directed mutagenesis we demonstrate that this region contains a Usp binding site necessary for VM32E regulation. Our results further support the crucial role of ecdysone signaling in controlling transcription of eggshell structural genes and suggest that the heterodimeric complex EcR-B1/Usp mediates the ecdysone-dependent VM32E transcriptional activation in the main body follicle cells.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Proteínas del Huevo/fisiología , Receptores de Esteroides/fisiología , Factores de Transcripción/fisiología , Animales , Proteínas de Unión al ADN/genética , Drosophila/genética , Proteínas de Drosophila/genética , Ecdisona/fisiología , Proteínas del Huevo/genética , Regulación del Desarrollo de la Expresión Génica , Mutagénesis Sitio-Dirigida , Oocitos/fisiología , Oogénesis , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Receptores de Esteroides/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA