Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurooncol ; 161(1): 57-66, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36509907

RESUMEN

PURPOSE: Infrared (IR) spectroscopy has the potential for tumor delineation in neurosurgery. Previous research showed that IR spectra of brain tumors are generally characterized by reduced lipid-related and increased protein-related bands. Therefore, we propose the exploitation of these common spectral changes for brain tumor recognition. METHODS: Attenuated total reflection IR spectroscopy was performed on fresh specimens of 790 patients within minutes after resection. Using principal component analysis and linear discriminant analysis, a classification model was developed on a subset of glioblastoma (n = 135) and non-neoplastic brain (n = 27) specimens, and then applied to classify the IR spectra of several types of brain tumors. RESULTS: The model correctly classified 82% (517/628) of specimens as "tumor" or "non-tumor", respectively. While the sensitivity was limited for infiltrative glioma, this approach recognized GBM (86%), other types of primary brain tumors (92%) and brain metastases (92%) with high accuracy and all non-tumor samples were correctly identified. CONCLUSION: The concept of differentiation of brain tumors from non-tumor brain based on a common spectroscopic tumor signature will accelerate clinical translation of infrared spectroscopy and related technologies. The surgeon could use a single instrument to detect a variety of brain tumor types intraoperatively in future clinical settings. Our data suggests that this would be associated with some risk of missing infiltrative regions or tumors, but not with the risk of removing non-tumor brain.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/cirugía , Glioblastoma/patología , Espectrofotometría Infrarroja/métodos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Glioma/patología , Encéfalo/patología , Espectroscopía Infrarroja por Transformada de Fourier/métodos
2.
Anal Bioanal Chem ; 415(4): 603-613, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36462048

RESUMEN

The in ovo sexing of chicken eggs is a current task and a prerequisite to overcome the mass killing of male day-old chicks from laying lines. Although various methods have been developed and tested in recent years, practicable methods for sex determination are still missing which can be applicated in poultry hatcheries before the chicken embryo is capable of nociception and pain sensation. Optical spectroscopic methods enable an early determination of the sex. In this study, a novel method based on two-wavelength in ovo fluorescence excitation is described. More than 1600 eggs were examined. In ovo fluorescence was sequentially excited at 532 nm and 785 nm. The fluorescence intensities of the spectral regions behave inversely with respect to sex. It is shown that the observed sex-related differences in the fluorescence intensities are based on the embryonic hemoglobin synthesis. The accuracy of sex determination is 96% for both sexes. The hatching rate is not reduced compared to an equivalent reference group.


Asunto(s)
Pollos , Análisis para Determinación del Sexo , Femenino , Embrión de Pollo , Animales , Masculino , Espectrometría de Fluorescencia/métodos , Análisis para Determinación del Sexo/métodos , Huevos , Óvulo
3.
Clin Neuropathol ; 42(1): 2-14, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36472392

RESUMEN

Raman spectroscopy is an optical technology that probes tissue composition and is envisioned for clinical applications in neurosurgery. Here, we provide an overview of basic and translational research addressing brain tumor delineation and diagnosis and identify potential scenarios for routine clinical use of Raman spectroscopy. Moreover, we discuss the practical technical requirements in the context of daily use as well as open questions regarding automated tissue assessment.


Asunto(s)
Neoplasias Encefálicas , Espectrometría Raman , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/cirugía , Procedimientos Neuroquirúrgicos/métodos , Espectrometría Raman/métodos
4.
J Neurooncol ; 139(2): 261-268, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29761368

RESUMEN

INTRODUCTION: Mutations in the isocytrate dehydrogenase 1 (IDH1) gene are early genetic events in glioma pathogenesis and cause profound metabolic changes. Because this genotype is found in virtually every tumor cell, therapies targeting mutant IDH1 protein are being developed. The intraoperative administration of those therapies would require fast technologies for the determination of IDH1 genotype. As of today, there is no such diagnostic test available. Recently, infrared spectroscopy was shown to bridge this gap. Here, we tested Raman spectroscopy for analysis of IDH1 genotype in glioma, which constitutes an alternative contact-free technique with the potential of being applicable in situ. METHODS: Human glioma samples (n = 36) were obtained during surgery and cryosections were prepared. IDH1 mutations were assessed using DNA sequencing and 100 Raman spectra were obtained for each sample. RESULTS: Analysis of Raman spectra revealed increased intensities in spectral bands related to DNA in IDH1 mutant glioma while bands assigned to molecular vibrations of lipids were significantly decreased. Moreover, intensities of Raman bands assigned to proteins differed in IDH1 mutant and IDH1 wild-type glioma, suggesting alterations in the protein profile. The selection of five bands (498, 826, 1003, 1174 and 1337 cm-1) allowed the classification of Raman spectra according to IDH1 genotype with a correct rate of 89%. CONCLUSION: Raman spectroscopy constitutes a simple, rapid and safe procedure for determination of the IDH1 mutation that shows great promise for clinically relevant in situ diagnostics.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Glioma/diagnóstico , Isocitrato Deshidrogenasa/genética , Mutación , Espectrometría Raman/métodos , Neoplasias Encefálicas/genética , Glioma/genética , Humanos , Pronóstico
5.
Acta Neurochir (Wien) ; 160(3): 449-457, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29230560

RESUMEN

BACKGROUND: Spinal cord injury (SCI) and the consecutive devastating neurological sequelae have an enormous individual and economic impact. Implantation of functionalized hydrogels is a promising approach, because they can serve as a matrix for the regenerating tissue, carry and release bioactive molecules and various cell types. We already demonstrated that non-functionalized soft alginate hydrogel supported axonal outgrowth and protected neurons against oxidative stress in vitro. Here, we investigated the effects of such soft alginate hydrogels on locomotor recovery in small and large spinal cord lesions. METHOD: Hemimyelonectomy of 2 mm or 4 mm length was performed in rats and soft alginate hydrogel was implanted. Functional recovery of the hindlimbs was assessed in the open field [Batto Beattie Bresnahan (BBB) score] and using swimming test [Louisville Swim score (LSS)] for 140 days post injury (DPI). Reference histology was performed. RESULTS: Rats that received an alginate implant into 2 mm spinal cord lesions demonstrated significantly improved locomotor recovery compared to controls detectable already at 10 DPI. At 140 DPI, they reached higher LSS and BBB scores in swimming and open field tests, respectively. However, this beneficial effect of alginate was lacking in animals with larger (4 mm) lesions. Histological examination suggested that fibrous scarring in the spinal cord was reduced after alginate implantation in comparison to controls. CONCLUSIONS: Implantation of soft alginate hydrogel in small spinal cord lesions improved functional recovery. Possible underlying mechanisms include the mechanical stabilization of the wound, reduction of secondary damage and inhibition of fibrous scarring.


Asunto(s)
Alginatos/uso terapéutico , Hidrogeles/uso terapéutico , Locomoción , Recuperación de la Función , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Cicatriz/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Actividad Motora , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Natación
6.
Epilepsia ; 58(1): e1-e5, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28064458

RESUMEN

The properties and structure of tissue can be visualized without labeling or preparation by multiphoton microscopy combining coherent anti-Stokes Raman scattering (CARS), addressing lipid content, second harmonic generation (SHG) showing collagen, and two-photon excited fluorescence (TPEF) of endogenous fluorophores. We compared samples of sclerotic and nonsclerotic human hippocampus to detect pathologic changes in the brain of patients with pharmacoresistant temporomesial epilepsy (n = 15). Multiphoton microscopy of cryosections and bulk tissue revealed hippocampal layering and micromorphologic details in accordance with reference histology: CARS displayed white and gray matter layering and allowed the assessment of axonal myelin. SHG visualized blood vessels based on adventitial collagen. In addition, corpora amylacea (CoA) were found to be SHG-active. Pyramidal cell bodies were characterized by intense cytoplasmic endogenous TPEF. Furthermore, diffuse TPEF around blood vessels was observed that co-localized with positive albumin immunohistochemistry and might indicate degeneration-associated vascular leakage. We present a label-free and fast optical approach that analyzes pathologic aspects of HS. Hippocampal layering, loss of pyramidal cells, and presence of CoA indicative of sclerosis are visualized. Label-free multiphoton microscopy has the potential to extend the histopathologic armamentarium for ex vivo assessment of changes of the hippocampal formation on fresh tissue and prospectively in vivo.


Asunto(s)
Epilepsia del Lóbulo Temporal/patología , Hipocampo/patología , Neuronas/patología , Adulto , Epilepsia del Lóbulo Temporal/complicaciones , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Persona de Mediana Edad , Esclerosis/etiología , Esclerosis/patología , Espectrometría Raman , Adulto Joven
7.
Anal Bioanal Chem ; 409(5): 1185-1194, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27966169

RESUMEN

Culling of day-old male chicks in production of laying hen strains involves several millions of animals every year worldwide and is ethically controversial. In an attempt to provide an alternative, optical spectroscopy was investigated to determine nondestructively in ovo the sex of early embryos of the domestic chicken. The extraembryonic blood circulation system was accessed by producing a window in the egg shell and the flowing blood was illuminated with a near-infrared laser. The strong fluorescence and the weak Raman signals were acquired and spectroscopically analyzed between 800 and 1000 nm. The increase of fluorescence intensity between 3.5 and 11.5 days of incubation was found to be in agreement with the erythropoietic stages, thus enabling to identify hemoglobin as fluorescence source. Sex-related differences in the fluorescence spectrum were found at day 3.5, and principal component (PC) analysis showed that the blood of males was characterized by a specific fluorescence band located at ∼910 nm. Supervised classification of the PC scores enabled the determination of the sex of 380 eggs at day 3.5 of incubation with a correct rate up to 93% by combining the information derived from both fluorescence and Raman scattering. Graphical abstract The fluorescence of blood obtained in ovo by illumination of embryonic vessels with a IR laser displays spectral differences that can be employed for sexing of eggs in early stage of incubation, before onset of embryo sensitivity and without hindering its development into a healthy chick.


Asunto(s)
Huevos , Análisis para Determinación del Sexo/métodos , Espectrometría de Fluorescencia/métodos , Animales , Pollos , Femenino , Masculino
8.
Anal Chem ; 88(17): 8657-63, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27512829

RESUMEN

Male birds of egg-laying hen strains have no commercial value and are culled immediately after hatching, raising concerns for animal welfare. Existing experimental methods for in ovo sexing require taking samples and are applicable after embryos' sexual differentiation. We demonstrate that Raman spectroscopy enables contactless in ovo sex determination of the domestic chicken (Gallus gallus f. dom.) already at day 3.5 of egg incubation. A sexing accuracy of 90% was obtained by analyzing the spectra of blood circulating in the extraembryonic vessels. The measurement is damage-free and barely affects the hatching rate. Sex recognition is achieved before the onset of sensitivity. Therefore, Raman spectroscopy provides an alternative to the culling of 1-day-old male chicks in laying hen production.


Asunto(s)
Pollos , Análisis para Determinación del Sexo/métodos , Espectrometría Raman , Cigoto , Animales , Embrión de Pollo , Femenino , Masculino
9.
Acta Neurochir (Wien) ; 158(2): 367-78, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26592254

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is a complex disease requiring a concerted multi-target approach. The most appropriate combination of therapeutic gene, cellular vehicle, and space filling scaffold still has to be determined. We present an approach that employs syngeneic adipose tissue serving as a three-dimensional biological implant, source of progenitor cells, and delivery system for therapeutic genes. In this pilot experiment, we evaluated the feasibility and short-term effects using gene-activated autologous fat grafts after SCI. METHODS: An experimental SCI model was established in syngeneic Fischer 344 rats by a T9-T10 hemimyelonectomy. Fat tissue was harvested from two donor rats. Animals were divided into four groups and treated with either (i) fat grafts activated by an adenoviral vector carrying the human NT-3 cDNA, (ii) or BDNF, (iii) or with untreated fat grafts or (iv) remained untreated. Animals were euthanized either 7 or 21 days after surgery, and spinal cord tissue was investigated by histological and immunohistochemical methods. RESULTS: NT-3 and BDNF were produced by gene-activated fat grafts for at least 21 days in vitro and in vivo. Fat tissue grafts remained stable at the site of implantation at 7 days and at 21 days. Neither BDNF-activated nor NT-3-activated fat graft had a detectable limiting effect on the neuronal degeneration. BDNF recruited microglia to perilesional site and attenuated their inflammatory response. CONCLUSIONS: Gene-activated syngeneic fat tissue serves as a three-dimensional biological material delivering therapeutic molecules to the site of SCI over an extended period of time. The BDNF-fat graft attenuated the inflammatory response. Whether these findings translate into functional recovery will require extended observation times.


Asunto(s)
Tejido Adiposo/trasplante , Terapia Genética , Traumatismos de la Médula Espinal/terapia , Tejido Adiposo/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Masculino , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Proyectos Piloto , Ratas , Ratas Endogámicas F344 , Traumatismos de la Médula Espinal/cirugía , Trasplante Homólogo
10.
Biophys Rev ; 16(2): 219-235, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38737209

RESUMEN

Neurological disorders, including spinal cord injury, peripheral nerve injury, traumatic brain injury, and neurodegenerative diseases, pose significant challenges in terms of diagnosis, treatment, and understanding the underlying pathophysiological processes. Label-free multiphoton microscopy techniques, such as coherent Raman scattering, two-photon excited autofluorescence, and second and third harmonic generation microscopy, have emerged as powerful tools for visualizing nervous tissue with high resolution and without the need for exogenous labels. Coherent Raman scattering processes as well as third harmonic generation enable label-free visualization of myelin sheaths, while their combination with two-photon excited autofluorescence and second harmonic generation allows for a more comprehensive tissue visualization. They have shown promise in assessing the efficacy of therapeutic interventions and may have future applications in clinical diagnostics. In addition to multiphoton microscopy, vibrational spectroscopy methods such as infrared and Raman spectroscopy offer insights into the molecular signatures of injured nervous tissues and hold potential as diagnostic markers. This review summarizes the application of these label-free optical techniques in preclinical models and illustrates their potential in the diagnosis and treatment of neurological disorders with a special focus on injury, degeneration, and regeneration. Furthermore, it addresses current advancements and challenges for bridging the gap between research findings and their practical applications in a clinical setting.

11.
Neurophotonics ; 11(Suppl 1): S11505, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38298866

RESUMEN

Significance: Deep learning enables label-free all-optical biopsies and automated tissue classification. Endoscopic systems provide intraoperative diagnostics to deep tissue and speed up treatment without harmful tissue removal. However, conventional multi-core fiber (MCF) endoscopes suffer from low resolution and artifacts, which hinder tumor diagnostics. Aim: We introduce a method to enable unpixelated, high-resolution tumor imaging through a given MCF with a diameter of around 0.65 mm and arbitrary core arrangement and inhomogeneous transmissivity. Approach: Image reconstruction is based on deep learning and the digital twin concept of the single-reference-based simulation with inhomogeneous optical properties of MCF and transfer learning on a small experimental dataset of biological tissue. The reference provided physical information about the MCF during the training processes. Results: For the simulated data, hallucination caused by the MCF inhomogeneity was eliminated, and the averaged peak signal-to-noise ratio and structural similarity were increased from 11.2 dB and 0.20 to 23.4 dB and 0.74, respectively. By transfer learning, the metrics of independent test images experimentally acquired on glioblastoma tissue ex vivo can reach up to 31.6 dB and 0.97 with 14 fps computing speed. Conclusions: With the proposed approach, a single reference image was required in the pre-training stage and laborious acquisition of training data was bypassed. Validation on glioblastoma cryosections with transfer learning on only 50 image pairs showed the capability for high-resolution deep tissue retrieval and high clinical feasibility.

12.
Neurooncol Adv ; 6(1): vdae082, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006162

RESUMEN

Background: Infrared (IR) spectroscopy allows intraoperative, optical brain tumor diagnosis. Here, we explored it as a translational technology for the identification of aggressive meningioma types according to both, the WHO CNS grading system and the methylation classes (MC). Methods: Frozen sections of 47 meningioma were examined by IR spectroscopic imaging and different classification approaches were compared to discern samples according to WHO grade or MC. Results: IR spectroscopic differences were more pronounced between WHO grade 2 and 3 than between MC intermediate and MC malignant, although similar spectral ranges were affected. Aggressive types of meningioma exhibited reduced bands of carbohydrates (at 1024 cm-1) and nucleic acids (at 1080 cm-1), along with increased bands of phospholipids (at 1240 and 1450 cm-1). While linear discriminant analysis was able to discern spectra of WHO grade 2 and 3 meningiomas (AUC 0.89), it failed for MC (AUC 0.66). However, neural network classifiers were effective for classification according to both WHO grade (AUC 0.91) and MC (AUC 0.83), resulting in the correct classification of 20/23 meningiomas of the test set. Conclusions: IR spectroscopy proved capable of extracting information about the malignancy of meningiomas, not only according to the WHO grade, but also for a diagnostic system based on molecular tumor characteristics. In future clinical use, physicians could assess the goodness of the classification by considering classification probabilities and cross-measurement validation. This might enhance the overall accuracy and clinical utility, reinforcing the potential of IR spectroscopy in advancing precision medicine for meningioma characterization.

13.
Neurobiol Dis ; 48(3): 339-47, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22782080

RESUMEN

Matrix metalloproteinases (MMPs) are involved in tissue repair, cell death and morphogenesis. We investigated the role of the gelatinases MMP-2 and MMP-9 in the pathogenesis of neuronal death induced by prolonged seizures in the developing brain. Seven-day-old rats, MMP-9 knockout mice and transgenic rats overexpressing MMP-9 received intraperitoneal injections of pilocarpine, 250 mg/kg, to induce seizures. After 6-72 h pups were sacrificed, tissue from different brain regions was isolated and expression of MMP-9 mRNA and protein was analyzed by real-time PCR or Western blot. Additionally, brains were fixed and processed for TUNEL-staining, immunohistochemistry and in situ zymography. We found increased numbers of TUNEL-positive cells 24 h after pilocarpine-induced seizures, most pronounced in cortical areas and the dentate gyrus, and less pronounced in thalamus. At 6-24 h, MMP-9 mRNA levels showed significant elevation compared to sham-treated controls; this effect resolved by 48 h, whereas MMP-2 mRNA levels remained stable. Cortical gelatinolytic activity, monitored by in situ zymography, was enhanced following pilocarpine-induced seizures. The MMP inhibitor GM 6001 ameliorated cell death following pilocarpine-induced seizures in infant rats. MMP-9 knockout mice were less susceptible to seizure-induced brain injury. Transgenic rats overexpressing MMP-9 were equally susceptible to seizure-induced brain injury as wild type rats. Our results suggest a significant contribution of MMP-9 to cell death after pilocarpine-induced seizures in the developing brain. As indicated by Western blot analysis, MMP-9 activation may be linked to activation of the Erk/CREB-pathway. The findings implicate involvement of MMP-9 in the pathophysiology of brain injury following seizures in the developing brain.


Asunto(s)
Apoptosis/fisiología , Encéfalo/enzimología , Metaloproteinasa 9 de la Matriz/metabolismo , Convulsiones/enzimología , Animales , Western Blotting , Encéfalo/patología , Convulsivantes/toxicidad , Humanos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Metaloproteinasa 9 de la Matriz/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa , Pilocarpina/toxicidad , ARN Mensajero/análisis , Ratas , Ratas Transgénicas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Convulsiones/inducido químicamente , Convulsiones/patología
14.
Anal Chem ; 84(20): 8707-14, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-22970705

RESUMEN

Spinal cord injury triggers a series of complex biochemical alterations of nervous tissue. Up to now, such cellular events could not be studied without conventional tissue staining. The development of optical, label-free imaging techniques could provide powerful monitoring tools with the potential to be applied in vivo. In this work, we assess the ability of vibrational spectroscopy to generate contrast at molecular level between normal and altered regions in a rat model of spinal cord injury. Using tissue sections, we demonstrate that Fourier transform infrared (FT-IR) spectroscopy and spontaneous Raman spectroscopy are able to identify the lesion, the surrounding scar, and unharmed normal tissue, delivering insight into the biochemical events induced by the injury and allowing mapping of tissue degeneration. The FT-IR and Raman spectroscopic imaging provides the basis for fast multimodal nonlinear optical microscopy (coherent anti-Stokes Raman scattering, endogenous two-photon fluorescence, and second harmonic generation). The latter proves to be a fast tool for imaging of the lesion on unstained tissue samples, based on the alteration in lipid content, extracellular matrix composition, and microglia/macrophages distribution pattern. The results establish these technologies in the field of regeneration in central nervous system, with the long-term goal to extend them to intravital use, where fast and nonharmful imaging is required.


Asunto(s)
Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrometría Raman/métodos , Traumatismos de la Médula Espinal/patología , Médula Espinal/patología , Animales , Ratas , Ratas Wistar
15.
Anal Bioanal Chem ; 403(3): 727-35, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22476784

RESUMEN

Fourier transform infrared (FT-IR) spectroscopic imaging has been used to characterize different types of pituitary gland tumors and normal pituitary tissue. Freshly resected tumor tissue from surgery was prepared as thin cryosections and examined by FT-IR spectroscopic imaging. Tissue types were discriminated via k-means cluster analysis and a supervised classification algorithm based on linear discriminant analysis. Spectral classification allowed us to discriminate between tumor and non-tumor cells, as well as between tumor cells that produce human growth hormone (hGH+) and tumor cells that do not produce that hormone (hGH-). The spectral classification was compared and contrasted with a histological PAS and orange G stained image. It was further shown that hGH+ pituitary tumor cells show stronger amide bands than tumor cells that do not produce hGH. This study demonstrates that FT-IR spectroscopic imaging can not only potentially serve as a fast and objective approach for discriminating pituitary gland tumors from normal tissue, but that it can also detect hGH-producing tumor cells.


Asunto(s)
Hipófisis/patología , Neoplasias Hipofisarias/patología , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Análisis por Conglomerados , Hormona de Crecimiento Humana/análisis , Humanos , Análisis Multivariante , Hipófisis/química , Neoplasias Hipofisarias/química
16.
Front Cell Dev Biol ; 10: 814746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186930

RESUMEN

Cephalopod mollusks are endowed with an impressive range of features that have captured the attention of scientists from different fields, the imaginations of artists, and the interests of the public. The ability to spontaneously regrow lost or damaged structures quickly and functionally is among one of the most notable peculiarities that cephalopods possess. Microscopical imaging techniques represent useful tools for investigating the regenerative processes in several species, from invertebrates to mammals. However, these techniques have had limited use in cephalopods mainly due to the paucity of specific and commercially available markers. In addition, the commonly used immunohistochemical staining methods provide data that are specific to the antigens studied. New microscopical methods were recently applied to vertebrates to investigate regenerative events. Among them, multiphoton microscopy appears promising. For instance, it does not depend on species-related epitopes, taking advantage of the specific characteristics of tissues and allowing for its use in a species-independent way. Here, we illustrate the results obtained by applying this label-free imaging technique to the injured arm of Octopus vulgaris, a complex structure often subject to injury in the wild. This approach allowed for the characterization of the entire tissue arm architecture (muscular layers, nerve component, connective tissues, etc.) and elements usually hardly detectable (such as vessels, hemocytes, and chromatophores). More importantly, it also provided morpho-chemical information which helped decipher the regenerative phases after damage, from healing to complete arm regrowth, thereby appearing promising for regenerative studies in cephalopods and other non-model species.

17.
J R Soc Interface ; 19(192): 20220209, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35857926

RESUMEN

The elucidation of biomechanics furthers our understanding of brain tumour biology. Brillouin spectroscopy is a new optical method that addresses viscoelastic properties down to subcellular resolution in a contact-free manner. Moreover, it can be combined with Raman spectroscopy to obtain co-localized biochemical information. Here, we applied co-registered Brillouin and Raman spectroscopy to U87-MG human glioblastoma cells in vitro. Using two-dimensional and three-dimensional cultures, we related biomechanical properties to local biochemical composition at the subcellular level, as well as the cell phenotype. Brillouin and Raman mapping of adherent cells showed that the nucleus and nucleoli are stiffer than the perinuclear region and the cytoplasm. The biomechanics of the cell cytoplasm is affected by culturing conditions, i.e. cells grown as spheroids are stiffer than adherent cells. Inside the spheroids, the presence of lipid droplets as assessed by Raman spectroscopy revealed higher Brillouin shifts that are not related to a local increase in stiffness, but are due to a higher refractive index combined with a lower mass density. This highlights the importance of locally defined biochemical reference data for a correct interpretation of the Brillouin shift of cells and tissues in future studies investigating the biomechanics of brain tumour models by Brillouin spectroscopy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Fenómenos Biomecánicos , Humanos , Fenotipo , Espectrometría Raman/métodos
18.
Clin Neurophysiol ; 133: 157-164, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34844880

RESUMEN

OBJECTIVE: Seizure forecasting using machine learning is possible, but the performance is far from ideal, as indicated by many false predictions and low specificity. Here, we examine false and missing alarms of two algorithms on long-term datasets to show that the limitations are less related to classifiers or features, but rather to intrinsic changes in the data. METHODS: We evaluated two algorithms on three datasets by computing the correlation of false predictions and estimating the information transfer between both classification methods. RESULTS: For 9 out of 12 individuals both methods showed a performance better than chance. For all individuals we observed a positive correlation in predictions. For individuals with strong correlation in false predictions we were able to boost the performance of one method by excluding test samples based on the results of the second method. CONCLUSIONS: Substantially different algorithms exhibit a highly consistent performance and a strong coherency in false and missing alarms. Hence, changing the underlying hypothesis of a preictal state of fixed time length prior to each seizure to a proictal state is more helpful than further optimizing classifiers. SIGNIFICANCE: The outcome is significant for the evaluation of seizure prediction algorithms on continuous data.


Asunto(s)
Electroencefalografía , Epilepsia/diagnóstico , Redes Neurales de la Computación , Convulsiones/diagnóstico , Adulto , Anciano , Bases de Datos Factuales , Epilepsia/fisiopatología , Femenino , Predicción , Humanos , Masculino , Persona de Mediana Edad , Convulsiones/fisiopatología
19.
Sci Rep ; 12(1): 18846, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344626

RESUMEN

Recent advances in label-free histology promise a new era for real-time diagnosis in neurosurgery. Deep learning using autofluorescence is promising for tumor classification without histochemical staining process. The high image resolution and minimally invasive diagnostics with negligible tissue damage is of great importance. The state of the art is raster scanning endoscopes, but the distal lens optics limits the size. Lensless fiber bundle endoscopy offers both small diameters of a few 100 microns and the suitability as single-use probes, which is beneficial in sterilization. The problem is the inherent honeycomb artifacts of coherent fiber bundles (CFB). For the first time, we demonstrate an end-to-end lensless fiber imaging with exploiting the near-field. The framework includes resolution enhancement and classification networks that use single-shot CFB images to provide both high-resolution imaging and tumor diagnosis. The well-trained resolution enhancement network not only recovers high-resolution features beyond the physical limitations of CFB, but also helps improving tumor recognition rate. Especially for glioblastoma, the resolution enhancement network helps increasing the classification accuracy from 90.8 to 95.6%. The novel technique enables histological real-time imaging with lensless fiber endoscopy and is promising for a quick and minimally invasive intraoperative treatment and cancer diagnosis in neurosurgery.


Asunto(s)
Endoscopios , Neoplasias , Diagnóstico por Imagen , Endoscopía , Neoplasias/diagnóstico por imagen
20.
J Biomed Opt ; 27(7): 75001, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-36399853

RESUMEN

Significance: Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer deaths with a best median survival of only 40 to 50 months for localized disease despite multimodal treatment. The standard tissue differentiation method continues to be pathology with histological staining analysis. Microscopic discrimination between inflammatory pancreatitis and malignancies is demanding. Aim: We aim to accurately distinguish native pancreatic tissue using infrared (IR) spectroscopy in a fast and label-free manner. Approach: Twenty cryopreserved human pancreatic tissue samples were collected from surgical resections. In total, more than 980,000 IR spectra were collected and analyzed using aMATLAB package. For differentiation of PDAC, pancreatitis, and normal tissue, a three-class training set for supervised classification was created with 25,000 spectra and the principal component analysis (PCA) score values for each cohort. Cross-validation was performed using the leaveone- out method. Validation of the algorithm was accomplished with 13 independent test samples. Results: Reclassification of the training set and the independent test samples revealed an overall accuracy of more than 90% using a discrimination algorithm. Conclusion: IR spectroscopy in combination with PCA and supervised classification is an efficient analytical method to reliably distinguish between benign and malignant pancreatic tissues. It opens up a wide research field for oncological and surgical applications.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis , Humanos , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Páncreas/patología , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/patología , Pancreatitis/diagnóstico , Pancreatitis/patología , Análisis Espectral/métodos , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA