Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Pharm ; 20(6): 2951-2965, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37146162

RESUMEN

Therapeutic proteins can be challenging to develop due to their complexity and the requirement of an acceptable formulation to ensure patient safety and efficacy. To date, there is no universal formulation development strategy that can identify optimal formulation conditions for all types of proteins in a fast and reliable manner. In this work, high-throughput characterization, employing a toolbox of five techniques, was performed on 14 structurally different proteins formulated in 6 different buffer conditions and in the presence of 4 different excipients. Multivariate data analysis and chemometrics were used to analyze the data in an unbiased way. First, observed changes in stability were primarily determined by the individual protein. Second, pH and ionic strength are the two most important factors determining the physical stability of proteins, where there exists a significant statistical interaction between protein and pH/ionic strength. Additionally, we developed prediction methods by partial least-squares regression. Colloidal stability indicators are important for prediction of real-time stability, while conformational stability indicators are important for prediction of stability under accelerated stress conditions at 40 °C. In order to predict real-time storage stability, protein-protein repulsion and the initial monomer fraction are the most important properties to monitor.


Asunto(s)
Anticuerpos Monoclonales , Quimiometría , Humanos , Estabilidad Proteica , Anticuerpos Monoclonales/química , Desplegamiento Proteico , Conformación Proteica , Estabilidad de Medicamentos
2.
Mol Pharm ; 18(7): 2669-2682, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34121411

RESUMEN

High-concentration (>100 g/L) solutions of monoclonal antibodies (mAbs) are typically characterized by anomalously large solution viscosity and shear thinning behavior for strain rates ≥103 s-1. Here, the link between protein-protein interactions (PPIs) and the rheology of concentrated solutions of COE-03 and COE-19 mAbs is studied by means of static and dynamic light scattering and microfluidic rheometry. By comparing the experimental data with predictions based on the Baxter sticky hard-sphere model, we surprisingly find a connection between the observed shear thinning and the predicted percolation threshold. The longest shear relaxation time of mAbs was much larger than that of model sticky hard spheres within the same region of the phase diagram, which is attributed to the anisotropy of the mAb PPIs. Our results suggest that not only the strength but also the patchiness of short-range attractive PPIs should be explicitly accounted for by theoretical approaches aimed at predicting the shear rate-dependent viscosity of dense mAb solutions.


Asunto(s)
Anisotropía , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Dominios y Motivos de Interacción de Proteínas , Reología , Humanos , Concentración Osmolar , Viscosidad
3.
Mol Pharm ; 17(2): 426-440, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31790599

RESUMEN

Therapeutic protein candidates should exhibit favorable properties that render them suitable to become drugs. Nevertheless, there are no well-established guidelines for the efficient selection of proteinaceous molecules with desired features during early stage development. Such guidelines can emerge only from a large body of published research that employs orthogonal techniques to characterize therapeutic proteins in different formulations. In this work, we share a study on a diverse group of proteins, including their primary sequences, purity data, and computational and biophysical characterization at different pH and ionic strength. We report weak linear correlations between many of the biophysical parameters. We suggest that a stability comparison of diverse therapeutic protein candidates should be based on a computational and biophysical characterization in multiple formulation conditions, as the latter can largely determine whether a protein is above or below a certain stability threshold. We use the presented data set to calculate several stability risk scores obtained with an increasing level of analytical effort and show how they correlate with protein aggregation during storage. Our work highlights the importance of developing combined risk scores that can be used for early stage developability assessment. We suggest that such scores can have high prediction accuracy only when they are based on protein stability characterization in different solution conditions.


Asunto(s)
Anticuerpos Monoclonales/química , Descubrimiento de Drogas/métodos , Inmunoglobulina G/química , Interferón alfa-2/química , Desplegamiento Proteico , Albúmina Sérica Humana/química , Transferrina/química , Secuencia de Aminoácidos , Almacenaje de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Concentración Osmolar , Agregado de Proteínas , Estabilidad Proteica , Proyectos de Investigación , Solubilidad
4.
Mol Pharm ; 16(12): 4775-4786, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31613625

RESUMEN

The coformulation of monoclonal antibody (mAb) mixtures provides an attractive route to achieving therapeutic efficacy where the targeting of multiple epitopes is necessary. Controlling and predicting the behavior of such mixtures requires elucidating the molecular basis for the self- and cross-protein-protein interactions and how they depend on solution variables. While self-interactions are now beginning to be well understood, systematic studies of cross-interactions between mAbs in solution do not exist. Here, we have used static light scattering to measure the set of self- and cross-osmotic second virial coefficients in a solution containing a mixture of two mAbs, mAbA and mAbB, as a function of ionic strength and pH. mAbB exhibits strong association at a low ionic strength, which is attributed to an electrostatic attraction that is enhanced by the presence of a strong short-ranged attraction of nonelectrostatic origin. Under all solution conditions, the measured cross-interactions are intermediate self-interactions and follow similar patterns of behavior. There is a strong electrostatic attraction at higher pH values, reflecting the behavior of mAbB. Protein-protein interactions become more attractive with an increasing pH due to reducing the overall protein net charges, an effect that is attenuated with an increasing ionic strength due to the screening of electrostatic interactions. Under moderate ionic strength conditions, the reduced cross-virial coefficient, which reflects only the energetic contribution to protein-protein interactions, is given by a geometric average of the corresponding self-coefficients. We show the relationship can be rationalized using a patchy sphere model, where the interaction energy between sites i and j is given by the arithmetic mean of the i-i and j-j interactions. The geometric mean does not necessarily apply to all mAb mixtures and is expected to break down at a lower ionic strength due to the nonadditivity of electrostatic interactions.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Dominios y Motivos de Interacción de Proteínas/fisiología , Humanos , Concentración de Iones de Hidrógeno , Luz , Concentración Osmolar , Unión Proteica/fisiología , Dispersión de Radiación , Soluciones/química , Electricidad Estática
5.
Pharm Res ; 36(4): 51, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30771015

RESUMEN

PURPOSE: Anti-drug antibodies can impair the efficacy of therapeutic proteins and, in some circumstances, induce adverse health effects. Immunogenicity can be promoted by aggregation; here we examined the ability of recombinant mouse heat shock protein 70 (rmHSP70) - a common host cell impurity - to modulate the immune responses to aggregates of two therapeutic mAbs in mice. METHODS: Heat and shaking stress methods were used to generate aggregates in the sub-micron size range from two human mAbs, and immunogenicity assessed by intraperitoneal exposure in BALB/c mice. RESULTS: rmHSP70 was shown to bind preferentially to aggregates of both mAbs, but not to the native, monomeric proteins. Aggregates supplemented with 0.1% rmHSP70 induced significantly enhanced IgG2a antibody responses compared with aggregates alone but the effect was not observed for monomeric mAbs. Dendritic cells pulsed with mAb aggregate showed enhanced IFNγ production on co-culture with T cells in the presence of rmHSP70. CONCLUSION: The results indicate a Th1-skewing of the immune response by aggregates and show that murine rmHSP70 selectively modulates the immune response to mAb aggregates, but not monomer. These data suggest that heat shock protein impurities can selectively accumulate by binding to mAb aggregates and thus influence immunogenic responses to therapeutic proteins.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Proteínas HSP70 de Choque Térmico/farmacología , Animales , Anticuerpos Monoclonales/metabolismo , Formación de Anticuerpos , Femenino , Proteínas HSP70 de Choque Térmico/inmunología , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/inmunología , Fenómenos Inmunogenéticos , Ratones , Ratones Endogámicos BALB C , Agregado de Proteínas , Unión Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Estrés Mecánico
6.
Bioconjug Chem ; 29(7): 2296-2308, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29856926

RESUMEN

Lipidation is a powerful strategy to improve the stability in vivo of peptide drugs. Attachment of a lipid chain to a hydrophilic peptide leads to amphiphilicity and the potential for surfactant-like self-assembly. Here, the self-assembly and conformation of three lipidated derivatives of the gastrointestinal peptide hormone PYY3-36 is examined using a comprehensive range of spectroscopic, scattering, and electron microscopy methods and compared to those of the parent PYY3-36 peptide. The peptides are lipidated at Ser(11), Arg(17), or Arg(23) in the peptide; the former is within the ß-turn domain (based on the published solution NMR structure), and the latter two are both within the α-helical domain. We show that it is possible to access a remarkable diversity of nanostructures ranging from micelles to nanotapes and fibrillar hydrogels by control of assembly conditions (concentration, pH, and temperature). All of the lipopeptides self-assemble above a critical aggregation concentration (cac), determined through pyrene fluorescence probe measurements, and they all have predominantly α-helical secondary structure at their native pH. The pH and temperature dependence of the α-helical conformation were probed via circular dichroism spectroscopy experiments. Lipidation was found to provide enhanced stability against changes in temperature and pH. The self-assembled structures were investigated using small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM). Distinct differences in nanostructure were observed for lipidated and unlipidated peptides, also depending on the position of lipidation. Remarkably, micelles containing lipopeptides with α-helical peptide conformation were observed. Gelation was observed at higher concentrations in certain pH intervals for the lipidated peptides, but not for unlipidated PYY3-36. Thus, lipidation, in addition to enhancing stability against pH and temperature variation, also provides a route to prepare PYY peptide hydrogels. These findings provide important insights into the control of PYY3-36 conformation and aggregation by lipidation, relevant to the development of future therapeutics based on this peptide hormone, for example, in treatments for obesity.


Asunto(s)
Lípidos/química , Péptido YY/metabolismo , Humanos , Lipopéptidos/metabolismo , Micelas , Nanoestructuras/química , Hormonas Peptídicas/metabolismo , Péptidos/química , Estructura Secundaria de Proteína
7.
J Am Chem Soc ; 139(48): 17508-17517, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29139290

RESUMEN

Conformational fluctuations within scFv antibodies are characterized by a novel perturbation-response decomposition of molecular dynamics trajectories. Both perturbation and response profiles are stratified into stabilizing and destabilizing conditions. The linker between the VH and VL domains exhibits the dominant dynamical response by being coupled to nearly the entire protein, responding to both stabilizing and destabilizing perturbations. Perturbations within complementarity-determining regions (CDR) induce rich behavior in dynamic response. Among many effects, stabilizing any CDR loop in the VH domain triggers a destabilizing response in all CDR loops in the VL domain and vice versa. Destabilizing residues within the VL domain are likely to stabilize all CDR loops in the VH domain, and, when these residues are not buried, the CDR loops in the VL domain are also likely to be stabilized. These effects, described by shifts in normal mode characteristics, initiate a propensity for dynamic allostery with possible functional implications in bispecific antibodies.


Asunto(s)
Mutación , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Secuencia de Aminoácidos , Anticuerpos Biespecíficos/química , Regiones Determinantes de Complementariedad/química , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/química , Simulación de Dinámica Molecular , Estabilidad Proteica
8.
Mol Pharm ; 14(8): 2852-2860, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28614662

RESUMEN

Liquid-liquid phase separation (LLPS) of monoclonal antibody (mAb) formulations involves spontaneous separation into dense (protein-rich) and diluted (protein-lean) phases and should be avoided in the final drug product. Understanding the factors leading to LLPS and ways to predict and prevent it would therefore be highly beneficial. Here we describe the link between LLPS behavior of an IgG1 mAb (mAb5), its solubility, and parameters extracted using 1H NMR spectroscopy, for various formulations. We show that the formulations demonstrating least LLPS lead to the largest mAb5 NMR signal intensities. In the formulations exhibiting the highest propensity to phase-separate the mAb NMR signal intensities are the lowest, even at higher temperatures without visible phase separation, suggesting a high degree of self-association prior to distinct phase separation. Addition of arginine glutamate prevented LLPS and led to a significant increase in the observed mAb signal intensity, whereas the effect of arginine hydrochloride was only marginal. Solution NMR spectroscopy was further used to characterize the protein-lean and protein-rich phases separately and demonstrated that protein self-association in the protein-rich phase can be significantly reduced by arginine glutamate. Solution NMR spectroscopy may be useful as a tool to assess the propensity of mAb solutions to phase-separate.


Asunto(s)
Anticuerpos Monoclonales/química , Arginina/química , Dipéptidos/química , Espectroscopía de Resonancia Magnética/métodos , Concentración de Iones de Hidrógeno
9.
Biophys J ; 110(9): 1933-42, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27166802

RESUMEN

A mechanical perturbation method that locally restricts conformational entropy along the protein backbone is used to identify putative allosteric sites in a series of antibody fragments. The method is based on a distance constraint model that integrates mechanical and thermodynamic viewpoints of protein structure wherein mechanical clamps that mimic substrate or cosolute binding are introduced. Across a set of six single chain-Fv fragments of the anti-lymphotoxin-ß receptor antibody, statistically significant responses are obtained by averaging over 10 representative structures sampled from a molecular dynamics simulation. As expected, the introduced clamps locally rigidify the protein, but long-ranged increases in both rigidity and flexibility are also frequently observed. Expanding our analysis to every molecular dynamics frame demonstrates that the allosteric responses are modulated by fluctuations within the hydrogen-bond network where the native ensemble is comprised of conformations that both are, and are not, affected by the perturbation in question. Population shifts induced by the mutations alter the allosteric response by adjusting which hydrogen-bond networks are the most probable. These effects are compared using response maps that track changes across each single chain-Fv fragment, thus providing valuable insight into how sensitive allosteric mechanisms are to mutations.


Asunto(s)
Entropía , Mutación , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Regulación Alostérica , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Dominios Proteicos , Anticuerpos de Cadena Única/metabolismo
10.
J Am Chem Soc ; 138(50): 16259-16265, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27998088

RESUMEN

Aggregation and amyloid fibril formation of peptides and proteins is a widespread phenomenon. It has serious implications in a range of areas from biotechnological and pharmaceutical applications to medical disorders. The aim of this study was to develop a better understanding of the mechanism of aggregation and amyloid fibrillation of an important pharmaceutical, human glucagon-like peptide-1 (GLP-1). GLP-1 is a 31-residue hormone peptide that plays an important role regulating blood glucose levels, analogues of which are used for treatment of type 2 diabetes. Amyloid fibril formation of GLP-1 was monitored using thioflavin T fluorescence as a function of peptide concentration between pH 7.5 and 8.2. Results from these studies establish that there is a highly unusual pH-induced switch in GLP-1 aggregation kinetics. At pH 8.2, the kinetics are consistent with a nucleation-polymerization mechanism for fibril formation. However, at pH 7.5, highly unusual kinetics are observed, where the lag time increases with increasing peptide concentration. We attribute this result to the formation of off-pathway species together with an initial slow, unimolecular step where monomer converts to a different monomeric form that forms on-pathway oligomers and ultimately fibrils. Estimation of the pKa values of all the ionizable groups in GLP-1 suggest it is the protonation/deprotonation of the N-terminus that is responsible for the switch with pH. In addition, a range of biophysical techniques were used to characterize (1) the start point of the aggregation reaction and (2) the structure and stability of the fibrils formed. These results show that the off-pathway species form under conditions where GLP-1 is most prone to form oligomers.


Asunto(s)
Péptido 1 Similar al Glucagón/química , Agregado de Proteínas , Secuencia de Aminoácidos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Multimerización de Proteína , Estructura Cuaternaria de Proteína
11.
PLoS Comput Biol ; 11(7): e1004327, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26132144

RESUMEN

The effects of somatic mutations that transform polyspecific germline (GL) antibodies to affinity mature (AM) antibodies with monospecificity are compared among three GL-AM Fab pairs. In particular, changes in conformational flexibility are assessed using a Distance Constraint Model (DCM). We have previously established that the DCM can be robustly applied across a series of antibody fragments (VL to Fab), and subsequently, the DCM was combined with molecular dynamics (MD) simulations to similarly characterize five thermostabilizing scFv mutants. The DCM is an ensemble based statistical mechanical approach that accounts for enthalpy/entropy compensation due to network rigidity, which has been quite successful in elucidating conformational flexibility and Quantitative Stability/Flexibility Relationships (QSFR) in proteins. Applied to three disparate antibody systems changes in QSFR quantities indicate that the VH domain is typically rigidified, whereas the VL domain and CDR L2 loop become more flexible during affinity maturation. The increase in CDR H3 loop rigidity is consistent with other studies in the literature. The redistribution of conformational flexibility is largely controlled by nonspecific changes in the H-bond network, although certain Arg to Asp salt bridges create highly localized rigidity increases. Taken together, these results reveal an intricate flexibility/rigidity response that accompanies affinity maturation.


Asunto(s)
Anticuerpos/química , Anticuerpos/genética , Evolución Molecular , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Modelos Genéticos , Anticuerpos/ultraestructura , Simulación por Computador , Fragmentos Fab de Inmunoglobulinas/ultraestructura , Modelos Químicos , Mutación/genética , Conformación Proteica , Relación Estructura-Actividad Cuantitativa
12.
Biotechnol Lett ; 38(4): 589-96, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26699895

RESUMEN

OBJECTIVES: The effect of different formulations variables on protein integrity were investigated using lysozyme as a model protein for the development of biotherapeutic protein formulations for use in the clinic. RESULTS: Buffer composition/concentration was the key variable of formulation reagents investigated in determining lysozyme stability and authenticity independent of protein concentration whilst the storage temperature and time, not surprisingly, were also key variables. Tryptic peptide mapping of the protein showed that the modifications occurred when formulated under specific conditions but not others. A model peptide system was developed that reflected the same behavior under formulation conditions as intact lysozyme. CONCLUSIONS: Peptide models may mirror the stability of proteins, or regions of proteins, in the same formulations and be used to help develop a rapid screen of formulations for stabilisation of biotherapeutic proteins.


Asunto(s)
Muramidasa/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Química Farmacéutica , Pollos , Clara de Huevo/química , Modelos Químicos
13.
Drug Deliv Transl Res ; 14(1): 266-279, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37505373

RESUMEN

The production of solid lipid nanoparticles (SLNs) is challenging, especially when considering the incorporation of biologics. A novel in-house method of microfluidic production of biologic-encapsulated SLNs is proposed, using a variety of base materials for formulation to help overcome the barriers presented during manufacture and administration. Trypsin is used as a model drug for hydrophilic encapsulation whilst testosterone is employed as a positive non-biologic lipophilic control active pharmaceutical ingredient. Particle sizes obtained ranged from 160 to 320 nm, and a lead formulation has been identified from the combinations assayed, allowing for high encapsulation efficiencies (47-90%, respectively) of both the large hydrophilic and the small hydrophobic active pharmaceutical ingredients (APIs). Drug release profiles were analysed in vitro to provide useful insight into sustained kinetics, providing data towards future in vivo studies, which displayed a slow prolonged release for testosterone and a quicker burst release for trypsin. The study represents a large leap forward in the field of SLN production, especially in the field of difficult-to-encapsulate molecules, and the technique also benefits from being more environmentally sustainable due to the use of microfluidics.


Asunto(s)
Microfluídica , Nanopartículas , Lípidos/química , Tripsina , Nanopartículas/química , Esteroides , Testosterona , Tamaño de la Partícula , Portadores de Fármacos/química
14.
Int J Pharm ; 650: 123710, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38097147

RESUMEN

With an increasing concern of global antimicrobial resistance, the efforts to improve the formulation of a narrowing library of therapeutic antibiotics must be confronted. The liposomal encapsulation of antibiotics using a novel and sustainable microfluidic method has been employed in this study to address this pressing issue, via a targeted, lower-dose medical approach. The study focusses upon microfluidic parameter optimisation, formulation stability, cytotoxicity, and future applications. Particle sizes of circa. 130 nm, with viable short-term (28-day) physical stability were obtained, using two different non-cytotoxic liposomal formulations, both of which displayed suitable antibacterial efficacy. The microfluidic method allowed for high encapsulation efficiencies (≈77 %) and the subsequent in vitro release profile suggested high limits of antibiotic dissociation from the nanovessels, achieving 90% release within 72 h. In addition to the experimental data, the growing use of poly(ethylene) glycol (PEG) within lipid-based formulations is discussed in relation to anti-PEG antibodies, highlighting the key pharmacological differences between PEGylated and non-PEGylated formulations and their respective advantages and drawbacks. It's surmised that in the case of the formulations used in this study, the addition of PEG upon the liposomal membrane would still be a beneficial feature to possess owing to beneficial features such as stability, antibiotic efficacy and the capacity to further modify the liposomal membrane.


Asunto(s)
Amoxicilina , Microfluídica , Liposomas , Antibacterianos , Polietilenglicoles
15.
J Pharm Pharmacol ; 75(2): 245-252, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36453867

RESUMEN

OBJECTIVES: The process of 3D printing to produce microfluidic chips is becoming commonplace, due to its quality, versatility and newfound availability. In this study, a UV liquid crystal display (LCD) printer has been implemented to produce a progression of microfluidic chips for the purpose of liposomal synthesis. The emphasis of this research is to test the limitations of UV LCD printing in terms of resolution and print speed optimisation for the production of microfluidic chips. KEY FINDINGS: By varying individual channel parameters such as channel length and internal geometries, the essential channel properties for optimal liposomal formulation are being investigated to act as a basis for future experimentation including the encapsulation of active pharmaceutical ingredients. Using the uniquely designed chips, liposomes of ≈120 nm, with polydispersity index values of ≤0.12 are able to be reproducibly synthesised. CONCLUSIONS: The influence of total flow rates and lipid choice is investigated in depth, to provide further clarification on how a microfluidic setup should be optimised. In-depth explanations of the importance of each channel parameter are also explained throughout, with reference to their importance for the properties of a successful liposome.


Asunto(s)
Liposomas , Microfluídica , Tamaño de la Partícula , Impresión Tridimensional
16.
Biomater Adv ; 153: 213557, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37441958

RESUMEN

Diabetic foot ulcers (DFUs) are a crucial complication of diabetes, as in a diabetic wound, each step of the physiological healing process is affected. This entails a more easily infectable wound, and delayed tissue regeneration due to the inflammation that occurs, leading to a drastic decrease in the overall patient's quality of life. As a strategy to manage DFUs, skin alternatives and wound dressings are currently receiving a lot of attention as they keep the wound environment "under control", while providing bioactive compounds that help to manage infection and inflammation and promote tissue repair. This has been made possible thanks to the advent of emerging technologies such as 3D Bioprinting to produce skin resembling constructs or microfluidics (MFs) that allows the manufacture of nanoparticles (NPs) that act as drug carriers, in a prompt and less expensive way. In the present proof-of-concept study, the possibility of combining two novel and appealing techniques in the manufacturing of wound dressings has been demonstrated for first time. The novelty of this work consists in the combination of liposomes (LPs) encapsulating the active pharmaceutical ingredient (API) into a hydrogel that is further printed into a three-dimensional scaffold for wound dressing; to the knowledge of the authors this has never been done before. A grid-shaped scaffold has been produced through the coaxial 3D bioprinting technique which has allowed to combine, in one single filament, two different bioinks. The inner core of the filament is a nanocomposite hydrogel consisting of hydroxyethyl cellulose (HEC) and PEGylated LPs encapsulated with thyme oil (TO) manufactured via MFs for the first time. The outer shell of the filament, instead, is represented by a hybrid hydrogel composed of sodium alginate/cellulose nanocrystals (SA/CNC) and enriched with free TO. This provides a combination of two different release ratios of the API, a bulk release for the first 24 h thanks to the free TO in the shell of the filament and a sustained release for up to 10 days provided from the API inside the LPs. Confocal Microscopy verified the actual presence of the LPs inside the scaffold after printing and evaluation using the zone of inhibition test proved the antibacterial activity of the manufactured scaffolds against both Gram-positive and Gram-negative bacteria.


Asunto(s)
Bioimpresión , Diabetes Mellitus , Pie Diabético , Humanos , Antibacterianos , Lipopolisacáridos , Microfluídica , Calidad de Vida , Bacterias Gramnegativas , Bacterias Grampositivas , Vendajes , Hidrogeles , Pie Diabético/tratamiento farmacológico , Cicatrización de Heridas , Inflamación , Celulosa/uso terapéutico
17.
Expert Rev Med Devices ; 19(7): 533-538, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35983986

RESUMEN

INTRODUCTION: Covid-19, alongside previous pandemics, has highlighted the need for the continued development of technologies that are at our disposal. Emerging technologies are those that show true promise in achieving such a goal and have begun to form sturdy independent research areas. Technological advances in healthcare must continually develop to ensure that the world is prepared for any future diseases that may ensue. As such, a strategic review into 43 manuscripts since 2019 has been conducted to determine the prominence of emerging technologies since the beginning of the Covid-19 pandemic. AREAS COVERED: Relating to their use in a pandemic state, additive manufacturing (AM), biofabrication, microfluidics, biomedical microelectromechanical systems (BioMEMS), and artificial intelligence (AI) are described. Applications over the past 2-3 years, as well as future developments, are considered throughout. EXPERT OPINION: All the technologies mentioned in this review are sure to develop further, having shown their importance and value during the covid-19 pandemic. As research continues within the area, their efficacy will increase to the point where it likely will become gold standard for pandemic control. Combining certain technologies mentioned has also proved to have had great success in improving the final results obtained.


Asunto(s)
COVID-19 , Pandemias , Inteligencia Artificial , COVID-19/epidemiología , Atención a la Salud , Humanos , Pandemias/prevención & control , SARS-CoV-2
18.
Int J Pharm ; 611: 121347, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34890709

RESUMEN

The encapsulation of biologic molecules using a microfluidic platform is a procedure that has been understudied but shows great promise from initial reported studies. The study focusses upon the encapsulation of bovine serum albumin (BSA) under various parameters and using multiple phospholipids to identify optimal conditions for the manufacturing of protein loaded lipid nanoparticles. Additionally, encapsulation of the enzyme trypsin (TRP) has been investigated to show the eligibility of the system to other biological medications. All liposomes were subject to rigorous physicochemical characterisation, including differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR), to document the successful synthesis of the liposomes. Drug-loaded liposome stability was investigated over a 28-day period at 5 °C and 37 °C, which showed encouraging results for 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) at all concentrations of BSA used. The sample containing 1 mg/ml BSA grew by only 10% over the study, which considering liposomes should be affected highly by biologic adsorption, shows great promise for the formulations. Encapsulation and in vitro release studies showed improved loading capacity for BSA compared to conventional methods, whilst maintaining a concise controlled release of the active pharmaceutical ingredient (API).


Asunto(s)
Productos Biológicos , Fosfolípidos , Liposomas , Microfluídica , Nanopartículas
19.
J Pharm Sci ; 109(9): 2699-2709, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32505449

RESUMEN

Protein-protein interactions are commonly measured in terms of the second osmotic virial coefficient, B22 from static light scattering (SLS) or the interaction parameter, kD from dynamic light scattering (DLS). Often these measurements are carried out at high co-solvent compositions, where correction factors are required for the light scattering analysis. For lysozyme in aqueous solutions containing the co-solvents NaCl, arginine chloride, urea, sucrose or guanidine chloride, we show that B22 determination requires using in the light scattering equation the refractive index increment of the protein measured at constant solvent chemical potential. Because the increment decreases with increasing co-solvent composition, using a constant value can lead to mis-interpretation of protein-protein interaction trends deduced from the B22 measurements. Furthermore, there is a contribution to the intensity auto-correlation function measured by dynamic light scattering due to co-solvents. This effect is removed by including longer delay times when fitting the cumulant analysis to determine the diffusion coefficients. We show that an experimentally observed correlation between B22 and kD is recovered once these correction factors have been applied. The findings are particularly relevant to biopharmaceutical industry, where B22 and kD measurements are used for screening excipient effects in liquid formulations.


Asunto(s)
Excipientes , Muramidasa , Mapeo de Interacción de Proteínas , Solventes , Dispersión Dinámica de Luz , Luz , Dispersión de Radiación
20.
J Mater Chem B ; 7(14): 2349-2361, 2019 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32254683

RESUMEN

Every biosensor, bioengineered scaffold or biomedical implant depends crucially on an ability to control protein adsorption at the material surface. Yet the adsorption of proteins to solid surfaces in aqueous media is a complex and poorly understood phenomenon. To gain further insights we study protein adsorption using the quartz crystal microbalance for 10 model globular proteins interacting with positive, negative, neutral, hydrophobic and mixed alkanethiol monolayers as well as silica, polystyrene and Teflon, equating to approximately 200 protein-surface combinations. The charge state of the materials in liquid was measured with atomic force microscopy using a colloidal probe and numerically solving the full non-linear Poisson-Boltzmann equation. This approach has allowed us to address some of the important questions surrounding the basic principles that govern protein adsorption including the relative importance of net charge and hydrophobicity and why some materials are protein resistant. With our set of mixed monolayer surfaces, we can modulate charge over a wide range whilst eliminating hydrophobic interactions and vice versa- thus permitting determination of the functional dependence of adsorption on these parameters. This has led us to develop two empirical predictive models with up to 90% accuracy that together encompass most materials relevant to biotechnological and biomedical applications.


Asunto(s)
Proteínas/química , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Poliestirenos/química , Politetrafluoroetileno/química , Dióxido de Silicio/química , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA