Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 712-713: 149960, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640734

RESUMEN

An essential ketone body, ß-hydroxybutyrate (BOHB), plays various roles in physiological regulations via protein acylations such as lysine acetylation and ß-hydroxybutyrylation. Here, to understand how BOHB systemically regulates acylations from an overarching perspective, we administered a ketogenic diet to mice to increase BOHB concentration and examined acylations. We found that global acetylation and ß-hydroxybutyrylation dramatically increase in various organs except for the brains, where the increase was much smaller than in the other organs. Interestingly, we observe no increase in histone acetylation in the organs where significant global protein acetylation occurs despite a substantial rise in histone ß-hydroxybutyrylation. Finally, we compared the transcriptome data of the mice's liver after the ketogenic diet to the public databases, showing that upregulated genes are enriched in those related to histone ß-hydroxybutyrylation in starvation. Our data indicate that a ketogenic diet induces diverse patterns of acylations depending on organs and protein localizations, suggesting that different mechanisms regulate acylations and that the ketogenic diet is associated with starvation in terms of protein modifications.


Asunto(s)
Ácido 3-Hidroxibutírico , Dieta Cetogénica , Histonas , Ratones Endogámicos C57BL , Animales , Histonas/metabolismo , Ratones , Ácido 3-Hidroxibutírico/metabolismo , Masculino , Acilación , Hígado/metabolismo , Acetilación , Especificidad de Órganos , Proteínas/metabolismo , Proteínas/genética , Transcriptoma
2.
Biochem Biophys Res Commun ; 676: 132-140, 2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37516030

RESUMEN

Insulin is essential in controlling blood glucose levels, and its synthesis and secretion have been well investigated. In contrast, how insulin secretory granules (ISGs) are degraded in pancreatic beta cells remains largely unknown. To clarify the mechanism, we constructed a fluorescent reporter detecting ISG degradation, where EGFP and mCherry are tandemly conjugated to a cytoplasmic region of ZnT8, an ISG membrane-localized protein. Depletion of serum and amino acid stimulated lysosomal ISG degradation detected with the reporter. Next, with MIN6 cells expressing Cas9 and the reporter, we investigated the involvement of conventional Atg5/7-dependent autophagy to show that it is dispensable for the ISG degradation process. Finally, we performed genome-wide screening by enriching the cells lacking the ISG degradation and showed that pathways regulating autophagy are not identified. These results suggest that alternative degradation in lysosomes, instead of conventional autophagy, may be involved in ISG degradation.


Asunto(s)
Células Secretoras de Insulina , Insulina , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Secreción de Insulina , Proteínas de la Membrana/metabolismo , Colorantes/metabolismo , Vesículas Secretoras/metabolismo , Gránulos Citoplasmáticos/metabolismo
3.
Diabetes ; 72(11): 1609-1620, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625131

RESUMEN

The Cre-loxP system provides valuable resources to analyze the importance of tissue-specific gene knockout (KO), including pancreatic ß-cells associated with the pathogenesis of diabetes. However, it is expensive and time consuming to generate transgenic mice harboring floxed genes of interest and cross them with cell-specific Cre expression mice. We establish a ßCas9 system with mice expressing Cas9 in pancreatic ß-cells and adeno-associated virus 8 (AAV8)-mediated guide RNA (gRNA) delivery based on CRISPR-Cas9 technology to overcome those shortcomings. Interbreeding CAG-loxP-STOP-loxP (LSL)-Cas9 with Ins1-Cre mice generates normal glucose-tolerant ßCas9 mice expressing Cas9 with fluorescent reporter EGFP specifically in ß-cells. We also show significant ß-cell-specific gene KO efficiency with AAV8-mediated delivery of gRNA for EGFP reporter by intraperitoneal injection in the mice. As a proof of concept, we administered AAV8 to ßCas9 mice for expressing gRNA for Pdx1, a culprit gene of maturity-onset diabetes of the young 4. As reported previously, we demonstrate that those mice show glucose intolerance with transdifferentiation of Pdx1 KO ß-cells into glucagon-expressing cells. We successfully generated a convenient ß-cell-specific gene KO system with ßCas9 mice and AAV8-mediated gRNA delivery.

4.
Cell Chem Biol ; 30(6): 658-671.e4, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36944338

RESUMEN

Autophagy plays an essential role in preserving cellular homeostasis in pancreatic beta cells. However, the extent of autophagic flux in pancreatic islets induced in various physiological settings remains unclear. In this study, we generate transgenic mice expressing pHluorin-LC3-mCherry reporter for monitoring systemic autophagic flux by measuring the pHluorin/mCherry ratio, validating them in the starvation and insulin-deficient model. Our findings reveal that autophagic flux in pancreatic islets enhances after starvation, and suppression of the flux after short-term refeeding needs more prolonged re-starvation in islets than in the other insulin-targeted organs. Furthermore, heterogeneity of autophagic flux in pancreatic beta cells manifests under insulin resistance, and intracellular calcium influx by glucose stimulation increases more in high- than low-autophagic flux beta cells, with differential gene expression, including lipoprotein lipase. Our pHluorin-LC3-mCherry mice enable us to reveal biological insight into heterogeneity in autophagic flux in pancreatic beta cells.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Células Secretoras de Insulina/metabolismo , Ratones Transgénicos , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Autofagia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA