Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 142(46): 19462-19467, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33151056

RESUMEN

The development of a photoinduced, highly diastereo- and enantioselective [3 + 2]-cycloaddition of N-cyclopropylurea with α-alkylstyrenes is reported. This asymmetric radical cycloaddition relies on the strategic placement of urea on cyclopropylamine as a redox-active directing group (DG) with anion-binding ability and the use of an ion pair, comprising an iridium polypyridyl complex and a weakly coordinating chiral borate ion, as a photocatalyst. The structure of the anion component of the catalyst governs reactivity, and pertinent structural modification of the borate ion enables high levels of catalytic activity and stereocontrol. This system tolerates a range of α-alkylstyrenes and hence offers rapid access to various aminocyclopentanes with contiguous tertiary and quaternary stereocenters, as the urea DG is readily removable.

2.
Angew Chem Int Ed Engl ; 59(28): 11456-11461, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32220040

RESUMEN

Catalysis by chiral weakly-coordinating anions (WCAs) remains underdeveloped due to the lack of a molecular design strategy for exploiting their characteristics, such as the non-nucleophilic nature. Here, we report the development of a chiral borate ion comprising an O,N,N,O-tetradentate backbone, which ensures hitherto unattainable structural robustness. Upon pairing with a proton, the hydrogen borate acts as an effective catalyst for the asymmetric Prins-type cyclization of vinyl ethers, providing access to structurally and stereochemically defined dihydropyrans. The key to selectivity control is the distinct ability of the borate ion to discriminate the prochiral faces of the acyclic oxonium ion intermediate and dictate the regiochemical outcome. We anticipate that this study paves the way for exploring the untapped potential of WCA catalysis for selective chemical synthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA