Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proteins ; 88(4): 558-572, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31597203

RESUMEN

Cytochromes P450 are versatile heme-based enzymes responsible for vital life processes. Of these, P450cam (substrate camphor) has been most studied. Despite this, precise mechanisms of the key O─O cleavage step remain partly elusive to date; effects observed in various enzyme mutants remain partly unexplained. We have carried out extended (to 1000 ns) MM-MD and follow-on quantum mechanics/molecular mechanics computations, both on the well-studied FeOO state and on Cpd(0) (compound 0). Our simulations include (all camphor-bound): (a) WT (wild type), FeOO state. (b) WT, Cpd(0). (c) Pdx (Putidaredoxin, redox partner of P450)-docked-WT, FeOO state. (d) Pdx-docked WT, Cpd(0). (e) Pdx-docked T252A mutant, Cpd(0). Among our key findings: (a) Effect of Pdx docking appears to go far beyond that indicated in prior studies: it leads to specific alterations in secondary structure that create the crucial proton relay network. (b) Specific proton relay networks we identify are: FeOO(H)⋯T252⋯nH 2 O⋯D251 in WT; FeOO(H)⋯nH 2 O⋯D251 in T252A mutant; both occur with Pdx docking. (c) Direct interaction of D251 with -FeOOH is, respectively, rare/frequent in WT/T252A mutant. (d) In WT, T252 is in the proton relay network. (e) Positioning of camphor appears significant: when camphor is part of H-bonding network, second protonation appears to be facilitated.


Asunto(s)
Proteínas Bacterianas/química , Alcanfor 5-Monooxigenasa/química , Alcanfor/química , Ferredoxinas/química , Hemo/química , Protones , Proteínas Bacterianas/metabolismo , Sitios de Unión , Alcanfor/metabolismo , Alcanfor 5-Monooxigenasa/metabolismo , Cristalografía por Rayos X , Ferredoxinas/metabolismo , Hemo/metabolismo , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Oxidación-Reducción , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Especificidad por Sustrato , Termodinámica
2.
Biochemistry ; 57(9): 1542-1551, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29412654

RESUMEN

Topotecan (TPT) is a nontoxic anticancer drug characterized by a pH-dependent lactone/carboxyl equilibrium. TPT acts on the covalently bonded DNA/topoisomerase I (DNA/TopoI) complex by intercalating between two DNA bases at the active site. This turns TopoI into a DNA-damaging agent and inhibits supercoil relaxation. Although only the lactone form of the drug is active and effectively inhibits TopoI, both forms have been co-crystallized at the same location within the DNA/TopoI complex. To gain further insights into the pH-dependent activity of TPT, the differences between two TPT:DNA/TopoI complexes presenting either the lactone (acidic pH) or the carboxyl (basic pH) form of TPT were studied by means of molecular dynamic simulations, quantum mechanical/molecular mechanical calculations, and topological analysis. We identified two specific amino acids that have a direct relationship with the activity of the drug, i.e., lysine 532 (K532) and asparagine 722 (N722). K532 forms a stable hydrogen bond bridge between TPT and DNA only when the drug is in its active lactone form. The presence of the active drug triggers the formation of an additional stable interaction between DNA and protein residues, where N722 acts as a bridge between the two fragments, thus increasing the binding affinity of DNA for TopoI and further slowing the release of DNA. Overall, our results provide a clear understanding of the activity of the TPT-like class of molecules and can help in the future design of new anticancer drugs targeting topoisomerase enzymes.


Asunto(s)
ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/metabolismo , Topotecan/química , Topotecan/farmacología , Asparagina/química , Asparagina/metabolismo , ADN/química , ADN/metabolismo , Humanos , Lisina/química , Lisina/metabolismo , Simulación de Dinámica Molecular , Teoría Cuántica , Relación Estructura-Actividad , Termodinámica , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/farmacología
3.
Biochim Biophys Acta Bioenerg ; 1859(5): 342-356, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29499187

RESUMEN

In Photosystem II (PSII), the Mn4CaO5-cluster of the active site advances through five sequential oxidation states (S0 to S4) before water is oxidized and O2 is generated. Here, we have studied the transition between the low spin (LS) and high spin (HS) configurations of S2 using EPR spectroscopy, quantum chemical calculations using Density Functional Theory (DFT), and time-resolved UV-visible absorption spectroscopy. The EPR experiments show that the equilibrium between S2LS and S2HS is pH dependent, with a pKa ≈ 8.3 (n ≈ 4) for the native Mn4CaO5 and pKa ≈ 7.5 (n ≈ 1) for Mn4SrO5. The DFT results suggest that exchanging Ca with Sr modifies the electronic structure of several titratable groups within the active site, including groups that are not direct ligands to Ca/Sr, e.g., W1/W2, Asp61, His332 and His337. This is consistent with the complex modification of the pKa upon the Ca/Sr exchange. EPR also showed that NH3 addition reversed the effect of high pH, NH3-S2LS being present at all pH values studied. Absorption spectroscopy indicates that NH3 is no longer bound in the S3TyrZ state, consistent with EPR data showing minor or no NH3-induced modification of S3 and S0. In both Ca-PSII and Sr-PSII, S2HS was capable of advancing to S3 at low temperature (198 K). This is an experimental demonstration that the S2LS is formed first and advances to S3via the S2HS state without detectable intermediates. We discuss the nature of the changes occurring in the S2LS to S2HS transition which allow the S2HS to S3 transition to occur below 200 K. This work also provides a protocol for generating S3 in concentrated samples without the need for saturating flashes.


Asunto(s)
Cianobacterias/enzimología , Complejo de Proteína del Fotosistema II/química , Agua/química , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/metabolismo , Agua/metabolismo
4.
Biochim Biophys Acta ; 1857(6): 740-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26826591

RESUMEN

Photosystem II (PSII) catalyzes light-driven water splitting in nature and is the key enzyme for energy input into the biosphere. Important details of its mechanism are not well understood. In order to understand the mechanism of water splitting, we perform here large-scale density functional theory (DFT) calculations on the active site of PSII in different oxidation, spin and ligand states. Prior to formation of the O-O bond, we find that all manganese atoms are oxidized to Mn(IV) in the S3 state, consistent with earlier studies. We find here, however, that the formation of the S3 state is coupled to the movement of a calcium-bound hydroxide (W3) from the Ca to a Mn (Mn1 or Mn4) in a process that is triggered by the formation of a tyrosyl radical (Tyr-161) and its protonated base, His-190. We find that subsequent oxidation and deprotonation of this hydroxide on Mn1 result in formation of an oxyl-radical that can exergonically couple with one of the oxo-bridges (O5), forming an O-O bond. When O(2) leaves the active site, a second Ca-bound water molecule reorients to bridge the gap between the manganese ions Mn1 and Mn4, forming a new oxo-bridge for the next reaction cycle. Our findings are consistent with experimental data, and suggest that the calcium ion may control substrate water access to the water oxidation sites.


Asunto(s)
Calcio/química , Dominio Catalítico , Complejo de Proteína del Fotosistema II/química , Agua/química , Calcio/metabolismo , Clorofila/química , Clorofila/metabolismo , Cinética , Luz , Manganeso/química , Manganeso/metabolismo , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Estructura Terciaria de Proteína , Especificidad por Sustrato , Agua/metabolismo
5.
J Org Chem ; 82(10): 5096-5101, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28414468

RESUMEN

The reactions between low-valent Rh(I) and Ir(I) metal-carbonyl complexes and arylnitrile oxides possess the electronic and structural features of 1,3-dipolar cycloadditions. Density functional theory (DFT) calculations on these reactions, involving both cyclopentadienyl and carboranyl ligands on the metal carbonyl, explain the ease of the chemical processes and the stabilities of the resulting metallaisoxazolin-5-ones. The metal-carbonyl bond has partial double bond character according to the Wiberg index calculated through NBO analysis, and so the reaction can be considered a normal 1,3-dipolar cycloaddition involving M═C bonds. The rates of formation of the metallacycloadducts are controlled by distortion energy, analogous to their organic counterparts. The superior ability of anionic Ir complexes to share their electron density and accommodate higher oxidation states explains their calculated higher reactivity toward cycloaddition, as compared to Rh analogues.


Asunto(s)
Complejos de Coordinación/síntesis química , Iridio/química , Nitrilos/química , Óxidos/química , Rodio/química , Complejos de Coordinación/química , Reacción de Cicloadición , Estructura Molecular
6.
Angew Chem Int Ed Engl ; 55(47): 14852-14857, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27782347

RESUMEN

Gram-negative bacteria represent a challenging task for antibacterial drug discovery owing to their impermeable cell membrane and restricted uptake of small molecules. We herein describe the synthesis of natural-product-derived epoxycyclohexenones and explore their antibiotic activity against several pathogenic bacteria. A compound with activity against Salmonella Typhimurium was identified, and the target enzymes were unraveled by quantitative chemical proteomics. Importantly, two protein hits were linked to bacterial stress response, and corresponding assays revealed an elevated susceptibility to reactive oxygen species upon compound treatment. The consolidated inhibition of these targets provides a rationale for antibacterial activity and highlights epoxycyclohexenones as natural product scaffolds with suitable properties for killing Gram-negative Salmonella.


Asunto(s)
Antibacterianos/farmacología , Benzoquinonas/farmacología , Productos Biológicos/farmacología , Salmonella typhimurium/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Benzoquinonas/síntesis química , Benzoquinonas/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Estructura Molecular
7.
Biochemistry ; 54(6): 1429-39, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25602614

RESUMEN

Deamidation is the uncatalyzed process by which asparagine or glutamine can be transformed into aspartic acid or glutamic acid, respectively. In its active homodimeric form, mammalian triosephosphate isomerase (TPI) contains two deamidation sites per monomer. Experimental evidence shows that the primary deamidation site (Asn71-Gly72) deamidates faster than the secondary deamidation site (Asn15-Gly16). To evaluate the factors controlling the rates of these two deamidation sites in TPI, we have performed graphics processing unit-enabled microsecond long molecular dynamics simulations of rabbit TPI. The kinetics of asparagine dipeptide and two deamidation sites in mammalian TPI are also investigated using quantum mechanical/molecular mechanical tools with the umbrella sampling technique. Analysis of the simulations has been performed using independent global and local descriptors that can influence the deamidation rates: desolvation effects, backbone acidity, and side chain conformations. Our findings show that all the descriptors add up to favor the primary deamidation site over the secondary one in mammalian TPI: Asn71 deamidates faster because it is more solvent accessible, the adjacent glycine NH backbone acidity is enhanced, and the Asn side chain has a preferential near attack conformation. The crucial impact of the backbone amide acidity of the adjacent glycine on the deamidation rate is shown by kinetic analysis. Our findings also shed light on the effect of high-order structure on deamidation: the deamidation in a small peptide is favored first because of the higher reactivity of the asparagine residue and then because of the stronger stability of the tetrahedral intermediate.


Asunto(s)
Amidas/química , Asparagina/química , Teoría Cuántica , Triosa-Fosfato Isomerasa/química , Animales , Simulación de Dinámica Molecular
8.
J Chem Inf Model ; 54(8): 2200-13, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25089727

RESUMEN

In a first step toward the development of an efficient and accurate protocol to estimate amino acids' pKa's in proteins, we present in this work how to reproduce the pKa's of alcohol and thiol based residues (namely tyrosine, serine, and cysteine) in aqueous solution from the knowledge of the experimental pKa's of phenols, alcohols, and thiols. Our protocol is based on the linear relationship between computed atomic charges of the anionic form of the molecules (being either phenolates, alkoxides, or thiolates) and their respective experimental pKa values. It is tested with different environment approaches (gas phase or continuum solvent-based approaches), with five distinct atomic charge models (Mulliken, Löwdin, NPA, Merz-Kollman, and CHelpG), and with nine different DFT functionals combined with 16 different basis sets. Moreover, the capability of semiempirical methods (AM1, RM1, PM3, and PM6) to also predict pKa's of thiols, phenols, and alcohols is analyzed. From our benchmarks, the best combination to reproduce experimental pKa's is to compute NPA atomic charge using the CPCM model at the B3LYP/3-21G and M062X/6-311G levels for alcohols (R(2) = 0.995) and thiols (R(2) = 0.986), respectively. The applicability of the suggested protocol is tested with tyrosine and cysteine amino acids, and precise pKa predictions are obtained. The stability of the amino acid pKa's with respect to geometrical changes is also tested by MM-MD and DFT-MD calculations. Considering its strong accuracy and its high computational efficiency, these pKa prediction calculations using atomic charges indicate a promising method for predicting amino acids' pKa in a protein environment.


Asunto(s)
Alcoholes/química , Cisteína/química , Fenoles/química , Serina/química , Compuestos de Sulfhidrilo/química , Tirosina/química , Modelos Químicos , Proteínas/química , Teoría Cuántica , Electricidad Estática , Termodinámica , Agua/química
9.
Comput Struct Biotechnol J ; 18: 1819-1829, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695274

RESUMEN

While chemical steps involved in bioactive cembranoid biosynthesis have been examined, the corresponding enzymatic mechanisms leading to their formation remain elusive. In the tobacco plant, Nicotiana tabacum, a putative cembratriene-ol synthase (CBTS) initiates the catalytic cascade that lead to the biosynthesis of cembratriene-4,6-diols, which displays antibacterial- and anti-proliferative activities. We report here on structural homology models, functional studies, and mechanistic explorations of this enzyme using a combination of biosynthetic and computational methods. This approach guided us to develop an efficient de novo production of five bioactive non- and monohydroxylated cembranoids. Our homology models in combination with quantum and classical simulations suggested putative principles of the CBTS catalytic cycle, and provided a possible rationale for the formation of premature olefinic side products. Moreover, the functional reconstruction of a N. tabacum-derived class II P450 with a cognate CPR, obtained by transcriptome mining provided for production of bioactive cembratriene-4,6-diols. Our combined findings provide mechanistic insights into cembranoid biosynthesis, and a basis for the sustainable industrial production of highly valuable bioactive cembranoids.

10.
Nat Chem ; 12(2): 145-158, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31844194

RESUMEN

New drugs are desperately needed to combat methicillin-resistant Staphylococcus aureus (MRSA) infections. Here, we report screening commercial kinase inhibitors for antibacterial activity and found the anticancer drug sorafenib as major hit that effectively kills MRSA strains. Varying the key structural features led to the identification of a potent analogue, PK150, that showed antibacterial activity against several pathogenic strains at submicromolar concentrations. Furthermore, this antibiotic eliminated challenging persisters as well as established biofilms. PK150 holds promising therapeutic potential as it did not induce in vitro resistance, and shows oral bioavailability and in vivo efficacy. Analysis of the mode of action using chemical proteomics revealed several targets, which included interference with menaquinone biosynthesis by inhibiting demethylmenaquinone methyltransferase and the stimulation of protein secretion by altering the activity of signal peptidase IB. Reduced endogenous menaquinone levels along with enhanced levels of extracellular proteins of PK150-treated bacteria support this target hypothesis. The associated antibiotic effects, especially the lack of resistance development, probably stem from the compound's polypharmacology.


Asunto(s)
Antibacterianos/uso terapéutico , Benzodioxoles/uso terapéutico , Reposicionamiento de Medicamentos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Sorafenib/análogos & derivados , Sorafenib/uso terapéutico , Animales , Antibacterianos/síntesis química , Antibacterianos/farmacocinética , Autólisis/inducido químicamente , Benzodioxoles/síntesis química , Benzodioxoles/farmacocinética , Biopelículas/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Masculino , Staphylococcus aureus Resistente a Meticilina/fisiología , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Sorafenib/farmacocinética , Relación Estructura-Actividad
11.
J Phys Chem A ; 113(30): 8704-11, 2009 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-19719316

RESUMEN

The regioselectivity in the cyclopolymerization of diallyl monomers is investigated using DFT-based reactivity indices. In the first part, the experimentally observed mode of cyclization (exo versus endo) of 11 selected radicals involved in this process is reproduced by the computation of activation energies, entropies, enthalpies, and Gibb's free energies for the 5- and 6-membered cyclization reactions. The application of a recently proposed energy partitioning of the activation barriers shows that the regioselectivity cannot be explained by the steric effect alone. Next, a number of relevant DFT-based reactivity indices, such as non-spin-polarized and spin-polarized Fukui functions, spin densities, and dual descriptors, were applied to probe the role of the polar and stereoelectronic effects in this reaction. The dual descriptor has been found to reproduce best the experimental trends, confirming the important role of the stereoelectronic effects.


Asunto(s)
Compuestos Alílicos/síntesis química , Simulación por Computador , Electrones , Modelos Químicos , Polímeros/síntesis química , Compuestos Alílicos/química , Ciclización , Polímeros/química , Estereoisomerismo , Termodinámica
12.
J Mol Model ; 25(7): 197, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222506

RESUMEN

Macrocyclic compounds are of growing interest as a new class of therapeutics, especially as inhibitors binding to protein-protein interfaces. As molecular modeling is a well-established complimentary tool in modern drug design, the number of attempts to develop reliable docking strategies and algorithms to accurately predict the binding mode of macrocycles is rising continuously. Standard molecular docking approaches need to be adapted to this application, as a comprehensive yet efficient sampling of all ring conformations of the macrocycle is necessary. To overcome this issue, we designed a molecular dynamics-based docking protocol for macrocycles, in which the challenging sampling step is addressed by conventional molecular dynamics (750 ns) simulations performed at moderately high temperature (370 K). Consecutive flexible docking with the DynaDock approach based on multiple, pre-sampled ring conformations yields highly accurate poses with ligand RMSD values lower than 1.8 Å. We further investigated the value of molecular dynamics-based complex stability estimations for pose selection and discuss its applicability in combination with standard binding free energy estimations for assessing the quality of poses in future blind docking studies.


Asunto(s)
Compuestos Macrocíclicos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Diseño de Fármacos , Ligandos , Compuestos Macrocíclicos/farmacología , Conformación Molecular , Estructura Molecular , Unión Proteica , Proteínas/química , Relación Estructura-Actividad Cuantitativa , Soluciones
13.
Sci Rep ; 9(1): 9731, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31278311

RESUMEN

Actin binding compounds are widely used tools in cell biology. We compare the biological and biochemical effects of miuraenamide A and jasplakinolide, a structurally related prototypic actin stabilizer. Though both compounds have similar effects on cytoskeletal morphology and proliferation, they affect migration and transcription in a distinctive manner, as shown by a transcriptome approach in endothelial cells. In vitro, miuraenamide A acts as an actin nucleating, F-actin polymerizing and stabilizing compound, just like described for jasplakinolide. However, in contrast to jasplakinolide, miuraenamide A competes with cofilin, but not gelsolin or Arp2/3 for binding to F-actin. We propose a binding mode of miuraenamide A, explaining both its similarities and its differences to jasplakinolide. Molecular dynamics simulations suggest that the bromophenol group of miurenamide A interacts with residues Tyr133, Tyr143, and Phe352 of actin. This shifts the D-loop of the neighboring actin, creating tighter packing of the monomers, and occluding the binding site of cofilin. Since relatively small changes in the molecular structure give rise to this selectivity, actin binding compounds surprisingly are promising scaffolds for creating actin binders with specific functionality instead of just "stabilizers".


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Depsipéptidos/farmacología , Gelsolina/metabolismo , Actinas/química , Sitios de Unión , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Depsipéptidos/química , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica
14.
PLoS One ; 13(10): e0205057, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30321208

RESUMEN

The allosteric activation of the intrinsically disordered enzyme Staphylococcus aureus sortase A is initiated via binding of a Ca2+ ion. Although Ca2+ binding was shown to initiate structural changes inducing disorder-to-order transitions, the details of the allosteric activation mechanism remain elusive. We performed long-term molecular dynamics simulations of sortase A without (3 simulations of 1.6 µs) and with bound Ca2+ (simulations of 1.6 µs, 1.8 µs, and 2.5 µs). Our results show that Ca2+ binding causes not only ordering of the disordered ß6/ß7 loop of the protein, but also modulates hinge motions in the dynamic ß7/ß8 loop, which is important for the catalytic activity of the enzyme. Cation binding triggers signal transmission from the Ca2+ binding site to the dynamic ß7/ß8 loop via the repetitive folding/unfolding of short helical stretches of the disordered ß6/ß7 loop. These correlated structural rearrangements lead to several distinct conformational states of the binding groove, which show optimal binding features for the sorting signal motif and feature binding energies up to 20 kcal/mol more favorable than observed for the sortase A without Ca2+. The presented results indicate a highly correlated, conformational selection-based activation mechanism of the enzyme triggered by cation binding. They also demonstrate the importance of the dynamics of intrinsically disordered regions for allosteric regulation.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Cisteína Endopeptidasas/metabolismo , Regulación Alostérica , Aminoaciltransferasas/química , Aminoaciltransferasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Calcio/química , Rastreo Diferencial de Calorimetría , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Iones/química , Simulación de Dinámica Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Staphylococcus aureus/enzimología , Termodinámica
15.
J Phys Chem B ; 116(22): 6288-301, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22574817

RESUMEN

Deamidation of asparagine is the spontaneous degradation of this residue into aspartic acid. The kinetics of this slow reaction is mainly dependent on the nature of the adjacent amino acid that follows asparagine in a peptide or protein primary sequence. In the homodimer triosephosphate isomerase (TPI), there are two main deamidation sites per subunit: Asn15-Gly16 and Asn71-Gly72 for which deamidation dynamics are known to be interrelated. In this study, we investigate the initiation of the deamidation reaction in TPI by means of molecular dynamics. Simulations based on classical AMBER force field are performed in a 60 to 90 ns time scale for six distinct samples. Conformational changes, desolvation effects, and hydrogen bond networks are analyzed to interpret the experimental findings and previous quantum mechanical (QM) results. Results that are based on desolvation analysis clarify the assignments in the literature about the different behaviors of two deamidating sites in TPI. Conformational analysis supports findings suggested by QM studies: the most favorable reaction mechanism is the one that yields to succinimide intermediate via one or two step routes. The mechanism leading to the succinimide intermediate most likely involves the formation of a tetrahedral intermediate that is formed either directly from asparagine or via a side chain tautomer intermediate. In all cases, surrounding water molecules are present to assist the reaction.


Asunto(s)
Amidas/metabolismo , Simulación de Dinámica Molecular , Triosa-Fosfato Isomerasa/metabolismo , Amidas/química , Animales , Modelos Moleculares , Conejos , Triosa-Fosfato Isomerasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA