RESUMEN
OBJECTIVES: The intestinal epithelium compartmentalizes the sterile bloodstream and the commensal bacteria in the gut. Accumulating evidence suggests that this barrier is impaired in sepsis, aggravating systemic inflammation. Previous studies reported that cathelicidin is differentially expressed in various tissues in sepsis. However, its role in sepsis-induced intestinal barrier dysfunction has not been investigated. DESIGN: To examine the role of cathelicidin in polymicrobial sepsis, cathelicidin wild-(Cnlp+/+) and knockout (Cnlp-/-) mice underwent cecal-ligation and puncture (CLP) followed by the assessment of septic mortality and morbidity as well as histological, biochemical, immunological, and transcriptomic analyses in the ileal tissues. We also evaluated the prophylactic and therapeutic efficacies of vitamin D3 (an inducer of endogenous cathelicidin) in the CLP-induced murine polymicrobial sepsis model. RESULTS: The ileal expression of cathelicidin was increased by three-fold after CLP, peaking at 4 h. Knockout of Cnlp significantly increased 7-day mortality and was associated with a higher murine sepsis score. Alcian-blue staining revealed a reduced number of mucin-positive goblet cells, accompanied by reduced mucin expression. Increased number of apoptotic cells and cleavage of caspase-3 were observed. Cnlp deletion increased intestinal permeability to 4kD fluorescein-labeled dextran and reduced the expression of tight junction proteins claudin-1 and occludin. Notably, circulating bacterial DNA load increased more than two-fold. Transcriptome analysis revealed upregulation of cytokine/inflammatory pathway. Depletion of Cnlp induced more M1 macrophages and neutrophils compared with the wild-type mice after CLP. Mice pre-treated with cholecalciferol (an inactive form of vitamin D3) or treated with 1alpha, 25-dihydroxyvitamin D3 (an active form of VD3) had decreased 7-day mortality and significantly less severe symptoms. Intriguingly, the administration of cholecalciferol after CLP led to worsened 7-day mortality and the associated symptoms. CONCLUSIONS: Endogenous cathelicidin promotes intestinal barrier integrity accompanied by modulating the infiltration of neutrophils and macrophages in polymicrobial sepsis. Our data suggested that 1alpha, 25-dihydroxyvitamin D3 but not cholecalciferol is a potential therapeutic agent for treating sepsis.
Asunto(s)
Péptidos Catiónicos Antimicrobianos , Mucosa Intestinal , Sepsis , Animales , Péptidos Catiónicos Antimicrobianos/fisiología , Mucosa Intestinal/metabolismo , Macrófagos , Masculino , Ratones , Ratones Noqueados , Neutrófilos , Sepsis/fisiopatología , Vitamina D/análogos & derivados , Vitamina D/farmacología , CatelicidinasRESUMEN
Metabolic syndrome (MetS) is a multi-factorial disorder including central obesity (CO), insulin resistance, hyperglycemia, dyslipidemia and hypertension which increases the risk of diabetes mellitus and cardiovascular diseases. CO is considered as an essential component of MetS according to International Diabetes Federation (IDF), which may further modulate distinct signalling pathways compared with the other four MetS risk factors. Given that ghrelin signalling and the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis regulates energy balance and metabolic homeostasis, this study examined the changes in various ghrelin products and circulating hormones in response to the interaction between CO and other MetS components including blood pressure, fasting blood glucose, triglycerides, and high-density lipoprotein cholesterol in 133 Hong Kong Chinese adults. Circulating obestatin and GH were increased and reduced, respectively, by either CO or the other 4-risk factor cluster. These changes were further augmented by the presence of all MetS risk factors. However, changes of ghrelin levels were not mediated by CO but the other MetS risk factors. Our findings suggest that CO does not predict all the dysregulation of signalling pathways in individuals with MetS. Although CO and other MetS may share common signalling targets (i.e., obestatin and GH), CO does not contribute to the perturbation of ghrelin signalling.
Asunto(s)
Ghrelina/sangre , Hormona de Crecimiento Humana/sangre , Síndrome Metabólico/sangre , Síndrome Metabólico/etiología , Obesidad Abdominal/sangre , Obesidad Abdominal/complicaciones , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Glucemia/metabolismo , Presión Sanguínea , HDL-Colesterol/sangre , Femenino , Hong Kong , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Síndrome Metabólico/fisiopatología , Persona de Mediana Edad , Nucleobindinas/sangre , Factores de Riesgo , Transducción de Señal , Triglicéridos/sangre , Adulto JovenRESUMEN
Introduction: Metabolic syndrome (MetS) is a multiplex cardiometabolic manifestation associated with type 2 diabetes mellitus and cardiovascular diseases. Yoga training has been shown to alleviate MetS. Recently, circulatory ghrelin profile was demonstrated to be associated with MetS. This study examined the effects of 1 year of yoga training on ß-cell function and insulin resistance, and the involvement of metabolic peptides, including unacylated ghrelin (UnAG), acylated ghrelin (AG), obestatin, growth hormone (GH), and insulin, in the beneficial effects of yoga training in centrally obese adults with MetS. Methods: This was a follow up study, in which data of risk factors of MetS, physical performance tests [resting heart rate (HR), chair stand test (CS), chair sit and reach test (CSR), back scratch test (BS), and single leg stand tests (SLS)] and serum samples of 79 centrally obese MetS subjects aged 58 ± 8 years (39 subjects received 1-year yoga training and 40 subjects received no training) were retrieved for analyses. ß-cell function and insulin resistance were examined by Homeostasis Model Assessment (HOMA). Circulating levels of UnAG, AG, obestatin, GH, and insulin were determined by enzyme-linked immunosorbent assay using fasting serum samples. Generalized estimating equation analysis and Mann-Whitney U-test were used to detect statistically significant differences between groups. Results: Waist circumference (WC) was significantly decreased after yoga intervention (control: +2%; yoga: -4%). Significant improvements in HR (control: +2%; yoga: -5%), CS (control: -1%; yoga: +24%), CSR left (control: worsen by 0.90 cm; yoga: improved by 4.21 cm), CSR right (control: worsen by 0.75 cm; yoga: improved by 4.28 cm), right side of BS (control: improved by 0.19 cm; yoga: improved by 4.31 cm), SLS left (control: -10%; yoga: +86%), and SLS right (control: -6%; yoga: +47%) were observed after 1-year yoga training. No significant difference was found between the two groups in insulin, HOMA indices, and disposition index. Yoga training significantly increased circulating GH (control: -3%; yoga: +22%), total circulating ghrelin (control: -26%; yoga: +13%), and UnAG (control: -27%; yoga: +14%), whereas decreased AG (control: -7%; yoga: -33%) and obestatin (control: +24%; yoga: -29%). Conclusion: One-year of yoga training modulated total ghrelin, UnAG, AG, obestatin, and GH while exerting beneficial effects on physical functions and central obesity in adults with MetS. The beneficial effects of yoga may be associated with the alteration of ghrelin gene product and GH.
RESUMEN
Objective: This study aimed to investigate how central obesity and hypertension modulate unacylated ghrelin (UnAG), acylated ghrelin (AG), obestatin, growth hormone (GH), and the ratios of UnAG/obestatin, AG/obestatin, and total ghrelin/obestatin. Methods: Circulatory abundances of UnAG, AG, obestatin and GH were determined in 387 Hong Kong Chinese female adults with age between 24 to 86 years based on a 2 × 2 factorial design of hypertension (blood pressure ≥140/90 mmHg) and central obesity (waist circumference or WC ≥80 cm). Participants were categorized as neither hypertensive nor centrally obese (NHNO; n = 105), hypertensive but not centrally obese (HNO; n = 102), centrally obese but not hypertensive (NHO; n = 74) and hypertensive and centrally obese (NO; n = 106). Pearson's correlation analyses were performed to detect the association between the peptides examined with WC and blood pressure. The main and interaction effects of hypertension and central obesity were examined by generalized estimating equations analyses. Results: Correlation analyses revealed that systolic blood pressure was negatively correlated with AG/obestatin, UnAG/obestatin and total ghrelin/obestatin ratios, AG, total ghrelin, and GH, while diastolic blood pressure was negatively correlated with UnAG/obestatin, total ghrelin/obestatin ratios, and GH. WC was negatively correlated with AG/obestatin, UnAG/obestatin, and total ghrelin/obestatin ratios, UnAG, AG, total ghrelin, GH, and obestatin. Interaction effects of hypertension and central obesity were observed on UnAG/obestatin, AG/obestatin and total ghrelin/obestatin ratios, and obestatin. Obestatin in NHO group was significantly higher compared to NHNO and HO groups. UnAG/obestatin, AG/obestatin, and total ghrelin/obestatin ratios were higher in NHNO group compared to HNO and HO groups. Main effects of central obesity and hypertension were observed in UnAG, total ghrelin and GH. The HO group manifested the lowest level of UnAG, total ghrelin and GH among all the groups studied. Main effect of hypertension was observed on AG, suggesting that hypertensive individuals exhibited lower levels of AG regardless of central obesity. Conclusion: Circulatory ghrelin gene products and GH exhibit different modes of modulation in response to the co-manifestation of multiple cardiovascular risk factors compared with a single risk factor alone.
RESUMEN
Pressure-induced injury (PI), such as a pressure ulcer, in patients with limited mobility is a healthcare issue worldwide. PI is an injury to skin and its underlying tissue such as skeletal muscle. Muscle compression, composed of mechanical deformation of muscle and external load, leads to localized ischemia and subsequent unloading reperfusion and, hence, a pressure ulcer in bed-bound patients. Although the gross factors involved in PI have been identified, little is known about the exact disease mechanism or its links to apoptosis, autophagy and inflammation. Here, we report that PI is mediated by intrinsic apoptosis and exacerbated by autophagy. Conditional ablation of Bax and Bak activates the Akt-mTOR pathway and Bnip3-mediated mitophagy and preserves mitochondrial contents in compressed muscle. Moreover, we find that the presence/absence of Bax and Bak alters the roles and functions of autophagy in PI. Our results suggest that manipulating apoptosis and autophagy are potential therapeutic targets for treatment and prevention of PI.
Asunto(s)
Músculo Esquelético/metabolismo , Presión/efectos adversos , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Western Blotting , Muerte Celular/genética , Muerte Celular/fisiología , Inmunoprecipitación , Masculino , Ratones , Ratones Noqueados , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genéticaRESUMEN
Unacylated ghrelin, the predominant form of circulating ghrelin, protects myotubes from cell death, which is a known attribute of pressure ulcers. In this study, we investigated whether unacylated ghrelin protects skeletal muscle from pressure-induced deep tissue injury by abolishing necroptosis and apoptosis signaling and whether these effects were mediated by SIRT1 pathway. Fifteen adult Sprague Dawley rats were assigned to receive saline or unacylated ghrelin with or without EX527 (a SIRT1 inhibitor). Animals underwent two 6-h compression cycles with 100 mmHg static pressure applied over the mid-tibialis region of the right limb whereas the left uncompressed limb served as the intra-animal control. Muscle tissues underneath the compression region, and at the similar region of the opposite uncompressed limb, were collected for analysis. Unacylated ghrelin attenuated the compression-induced muscle pathohistological alterations including rounding contour of myofibers, extensive nucleus accumulation in the interstitial space, and increased interstitial space. Unacylated ghrelin abolished the increase in necroptosis proteins including RIP1 and RIP3 and attenuated the elevation of apoptotic proteins including p53, Bax, and AIF in the compressed muscle. Furthermore, unacylated ghrelin opposed the compression-induced phosphorylation and acetylation of p65 subunit of NF-kB. The anti-apoptotic effect of unacylated ghrelin was shown by a decrease in apoptotic DNA fragmentation and terminal dUTP nick-end labeling index in the compressed muscle. The protective effects of unacylated ghrelin vanished when co-treated with EX527. Our findings demonstrated that unacylated ghrelin protected skeletal muscle from compression-induced injury. The myoprotective effects of unacylated ghrelin on pressure-induced tissue injury were associated with SIRT1 signaling.