Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
J Am Chem Soc ; 145(5): 3211-3220, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36701174

RESUMEN

The class I-III-VI2 diamondoid compounds with tetrahedral bonding are important semiconductors widely applied in optoelectronics. Understanding their heat transport properties and developing an effective method to predict the diamondoid solid solutions' thermal conductivity will help assess their impact as thermoelectrics. In this work, we investigated in detail the heat transport properties of CuGa1-xInxTe2 and Cu1-xAgxGaTe2 and found that in the Ag-alloyed solid solutions, the Ag atom off-centering effect results in crystallographic distortion and extra strong acoustic-optical phonon scattering and an extremely low lattice thermal conductivity. Moreover, we integrate the alloy scattering and the off-centering effect with the crystallographic distortion parameter to develop a modified Klemens model that predicts the thermal conductivity of diamondoid solid solutions. Finally, we demonstrate that Cu1-xAgxGaTe2 solid solutions are promising p-type thermoelectric materials, with a maximum ZT of 1.23 at 850 K for Cu0.58Ag0.4GaTe2.

2.
J Am Chem Soc ; 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37026697

RESUMEN

Entropy-engineered materials are garnering considerable attention owing to their excellent mechanical and transport properties, such as their high thermoelectric performance. However, understanding the effect of entropy on thermoelectrics remains a challenge. In this study, we used the PbGeSnCdxTe3+x family as a model system to systematically investigate the impact of entropy engineering on its crystal structure, microstructure evolution, and transport behavior. We observed that PbGeSnTe3 crystallizes in a rhombohedral structure at room temperature with complex domain structures and transforms into a high-temperature cubic structure at ∼373 K. By alloying CdTe with PbGeSnTe3, the increased configurational entropy lowers the phase-transition temperature and stabilizes PbGeSnCdxTe3+x in the cubic structure at room temperature, and the domain structures vanish accordingly. The high-entropy effect results in increased atomic disorder and consequently a low lattice thermal conductivity of 0.76 W m-1 K-1 in the material owing to enhanced phonon scattering. Notably, the increased crystal symmetry is conducive to band convergence, which results in a high-power factor of 22.4 µW cm-1 K-1. As a collective consequence of these factors, a maximum ZT of 1.63 at 875 K and an average ZT of 1.02 in the temperature range of 300-875 K were obtained for PbGeSnCd0.08Te3.08. This study highlights that the high-entropy effect can induce a complex microstructure and band structure evolution in materials, which offers a new route for the search for high-performance thermoelectrics in entropy-engineered materials.

3.
Nano Lett ; 22(10): 4083-4089, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35549361

RESUMEN

The monoclinic α-Cu2Se phase is the first multipolar antiferroelectric semiconductor identified recently by electron microscopy. As a semiconductor, although there are no delocalized electrons to form a static macroscopic polarization, a spontaneous and localized antiferroelectric polarization was found along multiple directions. In conventional ferroelectrics, the polarity can be switched by an applied electric field, and a ferroelectric to paraelectric transition can be modulated by temperature. Here, we show that a reversible and robust antiferroelectric to paraelectric switching in a Cu2Se semiconductor can be tuned electrically by low-voltage and high-frequency electric pulses, and the structural transformations are imaged directly by transmission electron microscopy (TEM). The atomic mechanism of the transformation was assigned to an electrically triggered cation rearrangement with a low-energy barrier. Due to differences of the antiferroelectric and paraelectric phases regarding their electrical, mechanical, and optical properties, such an electrically tunable transformation has a great potential in various applications in microelectronics.

4.
J Am Chem Soc ; 144(20): 9113-9125, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35537206

RESUMEN

The understanding of thermoelectric properties of ternary I-III-VI2 type (I = Cu, Ag; III = Ga, In; and VI = Te) chalcopyrites is less well developed. Although their thermal transport properties are relatively well studied, the relationship between the electronic band structure and charge transport properties of chalcopyrites has been rarely discussed. In this study, we reveal the unusual electronic band structure and the dynamic doping effect that could underpin the promising thermoelectric properties of Cu1-xAgxGaTe2 compounds. Density functional theory (DFT) calculations and electronic transport measurements suggest that the Cu1-xAgxGaTe2 compounds possess an unusual non-parabolic band structure, which is important for obtaining a high Seebeck coefficient. Moreover, a mid-gap impurity level was also observed in Cu1-xAgxGaTe2, which leads to a strong temperature-dependent carrier concentration and is able to regulate the carrier density at the optimized value for a wide temperature region and thus is beneficial to obtaining the high power factor and high average ZT of Cu1-xAgxGaTe2 compounds. We also demonstrate a great improvement in the thermoelectric performance of Cu1-xAgxGaTe2 by introducing Cu vacancies and ZnTe alloying. The Cu vacancies are effective in increasing the hole density and the electrical conductivity, while ZnTe alloying reduces the thermal conductivity. As a result, a maximum ZT of 1.43 at 850 K and a record-high average ZT of 0.81 for the Cu0.68Ag0.3GaTe2-0.5%ZnTe compound are achieved.

5.
J Am Chem Soc ; 144(16): 7402-7413, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35420804

RESUMEN

Converting waste heat into useful electricity using solid-state thermoelectrics has a potential for enormous global energy savings. Lead chalcogenides are among the most prominent thermoelectric materials, whose performance decreases with an increase in chalcogen amounts (e.g., PbTe > PbSe > PbS). Herein, we demonstrate the simultaneous optimization of the electrical and thermal transport properties of PbS-based compounds by alloying with GeS. The addition of GeS triggers a complex cascade of beneficial events as follows: Ge2+ substitution in Pb2+ and discordant off-center behavior; formation of Pb5Ge5S12 as stable second-phase inclusions through valence disproportionation of Ge2+ to Ge0 and Ge4+. PbS and Pb5Ge5S12 exhibit good conduction band energy alignment that preserves the high electron mobility; the formation of Pb5Ge5S12 increases the electron carrier concentration by introducing S vacancies. Sb doping as the electron donor produces a large power factor and low lattice thermal conductivity (κlat) of ∼0.61 W m-1 K-1. The highest performance was obtained for the 14% GeS-alloyed samples, which exhibited an increased room-temperature electron mobility of ∼121 cm2 V-1 s-1 for 3 × 1019 cm-3 carrier density and a ZT of 1.32 at 923 K. This is ∼55% greater than the corresponding Sb-doped PbS sample and is one of the highest reported for the n-type PbS system. Moreover, the average ZT (ZTavg) of ∼0.76 from 400 to 923 K is the highest for PbS-based systems.

6.
Nano Lett ; 21(21): 8970-8978, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34676752

RESUMEN

We report the observation of an anomalous nonlinear optical response of the prototypical three-dimensional topological insulator bismuth selenide through the process of high-order harmonic generation. We find that the generation efficiency increases as the laser polarization is changed from linear to elliptical, and it becomes maximum for circular polarization. With the aid of a microscopic theory and a detailed analysis of the measured spectra, we reveal that such anomalous enhancement encodes the characteristic topology of the band structure that originates from the interplay of strong spin-orbit coupling and time-reversal symmetry protection. The implications are in ultrafast probing of topological phase transitions, light-field driven dissipationless electronics, and quantum computation.

7.
J Am Chem Soc ; 143(15): 5978-5989, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33847500

RESUMEN

Owing to the diversity of composition and excellent transport properties, the ternary I-III-VI2 type diamond-like chalcopyrite compounds are attractive functional semiconductors, including as thermoelectric materials. In this family, CuInTe2 and CuGaTe2 are well investigated and achieve maximum ZT values of ∼1.4 at 950 K and an average ZT of 0.43. However, both compounds have poor electrical conductivity at low temperature, resulting in low ZT below 450 K. In this work, we have greatly improved the thermoelectric performance in the quinary diamondoid compound (Cu0.8Ag0.2)(In0.2Ga0.8)Te2 by understanding and controlling the effects of different constituent elements on the thermoelectric transport properties. Our combined theoretical and experimental effort indicates that Ga in the In site of the lattice decreases the carrier effective mass and improves the electrical conductivity and power factor of Cu0.8Ag0.2In1-xGaxTe2. Furthermore, Ag in the Cu site strongly suppresses the heat transport via the enhanced acoustic phonon-optical phonon coupling effects, leading to the ultralow thermal conductivity of ∼0.49 W m-1 K-1 at 850 K in Cu0.8Ag0.2In0.2Ga0.8Te2. Defect formation energy calculations suggest intrinsic Cu vacancies introduce defect levels that are important to the temperature-dependent hole density and electrical conductivity. Therefore, we introduced extra Cu vacancies to optimize the hole carrier density and improve the power factor of Cu0.8Ag0.2In0.2Ga0.8Te2. As a result, a maximum ZT of ∼1.5 at 850 K and an average ZT of 0.78 in the temperature range of 400-850 K are obtained, which is among the highest in the diamond-like compound family.

8.
Angew Chem Int Ed Engl ; 60(1): 268-273, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32926532

RESUMEN

We present an effective approach to favorably modify the electronic structure of PbSe using Ag doping coupled with SrSe or BaSe alloying. The Ag 4d states make a contribution to in the top of the heavy hole valence band and raise its energy. The Sr and Ba atoms diminish the contribution of Pb 6s2 states and decrease the energy of the light hole valence band. This electronic structure modification increases the density-of-states effective mass, and strongly enhances the thermoelectric performance. Moreover, the Ag-rich nanoscale precipitates, discordant Ag atoms, and Pb/Sr, Pb/Ba point defects in the PbSe matrix work together to reduce the lattice thermal conductivity, resulting a record high average ZTavg of around 0.86 over 400-923 K.

9.
J Am Chem Soc ; 142(28): 12524-12535, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32628474

RESUMEN

Defect chemistry is critical to designing high performance thermoelectric materials. In SnTe, the naturally large density of cation vacancies results in excessive hole doping and frustrates the ability to control the thermoelectric properties. Yet, recent work also associates the vacancies with suppressed sound velocities and low lattice thermal conductivity, underscoring the need to understand the interplay between alloying, vacancies, and the transport properties of SnTe. Here, we report solid solutions of SnTe with NaSbTe2 and NaBiTe2 (NaSnmSbTem+2 and NaSnmBiTem+2, respectively) and focus on the impact of the ternary alloys on the cation vacancies and thermoelectric properties. We find introduction of NaSbTe2, but not NaBiTe2, into SnTe nearly doubles the natural concentration of Sn vacancies. Furthermore, DFT calculations suggest that both NaSbTe2 and NaBiTe2 facilitate valence band convergence and simultaneously narrow the band gap. These effects improve the power factors but also make the alloys more prone to detrimental bipolar diffusion. Indeed, the performance of NaSnmBiTem+2 is limited by strong bipolar transport and only exhibits modest maximum ZTs ≈ 0.85 at 900 K. In NaSnmSbTem+2 however, the doubled vacancy concentration raises the charge carrier density and suppresses bipolar diffusion, resulting in superior power factors than those of the Bi-containing analogues. Lastly, NaSbTe2 incorporation lowers the sound velocity of SnTe to give glasslike lattice thermal conductivities. Facilitated by the favorable impacts of band convergence, vacancy-augmented hole concentration, and lattice softening, NaSnmSbTem+2 reaches high ZT ≈ 1.2 at 800-900 K and a competitive average ZTavg of 0.7 over 300-873 K. The difference in ZT between two chemically similar compounds underscores the importance of intrinsic defects in engineering high-performance thermoelectrics.

10.
Nature ; 508(7496): 373-7, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24740068

RESUMEN

The thermoelectric effect enables direct and reversible conversion between thermal and electrical energy, and provides a viable route for power generation from waste heat. The efficiency of thermoelectric materials is dictated by the dimensionless figure of merit, ZT (where Z is the figure of merit and T is absolute temperature), which governs the Carnot efficiency for heat conversion. Enhancements above the generally high threshold value of 2.5 have important implications for commercial deployment, especially for compounds free of Pb and Te. Here we report an unprecedented ZT of 2.6 ± 0.3 at 923 K, realized in SnSe single crystals measured along the b axis of the room-temperature orthorhombic unit cell. This material also shows a high ZT of 2.3 ± 0.3 along the c axis but a significantly reduced ZT of 0.8 ± 0.2 along the a axis. We attribute the remarkably high ZT along the b axis to the intrinsically ultralow lattice thermal conductivity in SnSe. The layered structure of SnSe derives from a distorted rock-salt structure, and features anomalously high Grüneisen parameters, which reflect the anharmonic and anisotropic bonding. We attribute the exceptionally low lattice thermal conductivity (0.23 ± 0.03 W m(-1) K(-1) at 973 K) in SnSe to the anharmonicity. These findings highlight alternative strategies to nanostructuring for achieving high thermoelectric performance.

11.
J Am Chem Soc ; 141(15): 6403-6412, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30916942

RESUMEN

We report that Ga-doped and Ga-In-codoped n-type PbS samples show excellent thermoelectric performance in the intermediate temperature range. First-principles electronic structure calculations reveal that Ga doping can cause Fermi level pinning in PbS by introducing a gap state between the conduction and valence bands. Furthermore, Ga-In codoping introduces an extra conduction band. These added electronic features lead to high electron mobilities up to µH ∼ 630 cm2 V-1 s-1 for n of 1.67 × 1019 cm-3 and significantly enhanced Seebeck coefficients in PbS. Consequently, we obtained a maximum power factor of ∼32 µW cm-1 K-2 at 300 K for Pb0.9875Ga0.0125S, which is the highest reported for PbS-based systems giving a room-temperature figure of merit, ZT, of ∼0.35 and ∼0.82 at 923 K. For the codoped Pb0.9865Ga0.0125In0.001S, the maximum ZT rises to ∼1.0 at 923 K and achieves a record-high average ZT (ZTavg) of ∼0.74 in the temperature range of 400-923 K.

12.
J Am Chem Soc ; 141(23): 9249-9261, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31074974

RESUMEN

Ferromagnetic semiconductors (FMSs) featuring a high Curie transition temperature ( Tc) and a strong correlation between itinerant carriers and localized magnetic moments are of tremendous importance for the development of practical spintronic devices. The realization of such materials hinges on the ability to generate and manipulate a high density of itinerant spin-polarized carriers and the understanding of their responses to external stimuli. In this study, we demonstrate the ability to tune magnetic ordering in the p-type FMS FeSb2- xSn xSe4 (0 ≤ x ≤ 0.20) through carrier density engineering. We found that the substitution of Sb by Sn FeSb2- xSn xSe4 increases the ordering of metal atoms within the selenium crystal lattice, leading to a large separation between magnetic centers. This results in a decrease in the Tc from 450 K for samples with x ≤ 0.05 to 325 K for samples with 0.05 < x ≤ 0.2. In addition, charge disproportionation arising from the substitution of Sb3+ by Sn2+ triggers the partial oxidation of Sb3+ to Sb5+, which is accompanied by the generation of both electrons and holes. This leads to a drastic decrease in the electrical resistivity and thermopower simultaneously with a large increase in the magnetic susceptibility and saturation magnetization upon increasing Sn content. The observed bipolar doping induces a very interesting temperature-induced quantum electronic transition (Lifshitz transition), which is manifested by the presence of an anomalous peak in the resistivity curve simultaneously with a reversal of the sign of a majority of the charge carriers from hole-like to electron-like at the temperature of maximum resistivity. This study suggests that while there is a strong correlation between the overall magnetic moment and free carrier spin in FeSb2- xSn xSe4 FMSs, the magnitude of the Curie temperature strongly depends on the spatial separation between localized magnetic centers rather than the concentration of magnetic atoms or the density of itinerant carriers.

13.
J Am Chem Soc ; 141(10): 4480-4486, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30779557

RESUMEN

We show an example of hierarchically designing electronic bands of PbSe toward excellent thermoelectric performance. We find that alloying 15 mol % PbTe into PbSe causes a negligible change in the light and heavy valence band energy offsets (Δ EV) of PbSe around room temperature; however, with rising temperature it makes Δ EV decrease at a significantly higher rate than in PbSe. In other words, the temperature-induced valence band convergence of PbSe is accelerated by alloying with PbTe. On this basis, applying 3 mol % Cd substitution on the Pb sites of PbSe0.85Te0.15 decreases Δ EV and enhances the Seebeck coefficient at all temperatures. Excess Cd precipitates out as CdSe1- yTe y, whose valence band aligns with that of the p-type Na-doped PbSe0.85Te0.15 matrix. This enables facile charge transport across the matrix/precipitate interfaces and retains the high carrier mobilities. Meanwhile, compared to PbSe the lattice thermal conductivity of PbSe0.85Te0.15 is significantly decreased to its amorphous limit of 0.5 W m-1 K-1. Consequently, a highest peak ZT of 1.7 at 900 K and a record high average ZT of ∼1 (400-900 K) for a PbSe-based system are achieved in the composition Pb0.95Na0.02Cd0.03Se0.85Te0.15, which are ∼70% and ∼50% higher than those of Pb0.98Na0.02Se control sample, respectively.

14.
J Am Chem Soc ; 141(27): 10905-10914, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31203611

RESUMEN

Understanding the nature of phonon transport in solids and the underlying mechanism linking lattice dynamics and thermal conductivity is important in many fields, including the development of efficient thermoelectric materials where a low lattice thermal conductivity is required. Herein, we choose the pair of synthetic chalcopyrite CuFeS2 and talnakhite Cu17.6Fe17.6S32 compounds, which possess the same elements and very similar crystal structures but very different phonon transport, as contrasting examples to study the influence of lattice dynamics and chemical bonding on the thermal transport properties. Chemically, talnakhite derives from chalcopyrite by inserting extra Cu and Fe atoms in the chalcopyrite lattice. The CuFeS2 compound has a lattice thermal conductivity of 2.37 W m-1 K-1 at 625 K, while Cu17.6Fe17.6S32 features Cu/Fe disorder and possesses an extremely low lattice thermal conductivity of merely 0.6 W m-1 K-1 at 625 K, approaching the amorphous limit κmin. Low-temperature heat capacity measurements and phonon calculations point to a large anharmonicity and low Debye temperature in Cu17.6Fe17.6S32, originating from weaker chemical bonds. Moreover, Mössbauer spectroscopy suggests that the state of Fe atoms in Cu17.6Fe17.6S32 is partially disordered, which induces the enhanced alloy scattering. All of the above peculiar features, absent in CuFeS2, contribute to the extremely low lattice thermal conductivity of the Cu17.6Fe17.6S32 compound.

15.
J Am Chem Soc ; 141(40): 16169-16177, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31508945

RESUMEN

PbTe-based thermoelectric materials are some of the most promising for converting heat into electricity, but their n-type versions still lag in performance the p-type ones. Here, we introduce midgap states and nanoscale precipitates using Ga-doping and GeTe-alloying to considerably improve the performance of n-type PbTe. The GeTe alloying significantly enlarges the energy band gap of PbTe and subsequent Ga doping introduces special midgap states that lead to an increased density of states (DOS) effective mass and enhanced Seebeck coefficients. Moreover, the nucleated Ga2Te3 nanoscale precipitates and off-center discordant Ge atoms in the PbTe matrix cause intense phonon scattering, strongly reducing the thermal conductivity (∼0.65 W m-1 K-1 at 623 K). As a result, a high room-temperature thermoelectric figure of merit ZT ∼ 0.59 and a peak ZTmax of ∼1.47 at 673 K were obtained for the Pb0.98Ga0.02Te-5%GeTe. The ZTavg value that is most relevant for devices is ∼1.27 from 400 to 773 K, the highest recorded value for n-type PbTe.

16.
Phys Chem Chem Phys ; 21(25): 13569-13577, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31134973

RESUMEN

Recently, copper chalcogenides have attracted great attention due to their potential application for mid- to high-temperature thermoelectric power generation. In this work, we report the thermoelectric properties of Cu2Se compounds with different sample preparation processes and the inclusion of a nanoscale Ag2Se powder synthesized with a unique wet chemistry procedure. The Cu2Se compounds were prepared by solid state reaction (SSR), fast quenching (FQ) and mechanically alloyed with nanostructured Ag2Se (NM) followed by hot pressing. High temperature transport properties were assessed by the Seebeck coefficient, electrical conductivity and thermal conductivity measurements. Structural characterization demonstrates that the nano-Ag2Se included sample is multi-phase with several nanoscale features not seen in the Cu2Se samples prepared in the standard method. As a result, the Cu2Se-NM sample possesses a miniscule thermal conductivity, with values as low as 0.5 W m-1 K-1. Fortunately, the nano-inclusions present in the Cu2Se-NM sample do not significantly disrupt electronic transport, preserving the power factor at a consistently high value over a broad range of temperatures. Consequently, the nano-Ag2Se included sample exhibits large average ZT values and a maximum of 1.85 at 800 K that rivals some of the best thermoelectrics currently available. Here, we present microstructural and transport evidence that the wet chemistry technique implemented in our study enables the optimization of thermoelectric performance in superionic conductor Cu2Se.

17.
Nature ; 500(7460): 59-63, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23863931

RESUMEN

Research in stretchable conductors is fuelled by diverse technological needs. Flexible electronics, neuroprosthetic and cardiostimulating implants, soft robotics and other curvilinear systems require materials with high conductivity over a tensile strain of 100 per cent (refs 1-3). Furthermore, implantable devices or stretchable displays need materials with conductivities a thousand times higher while retaining a strain of 100 per cent. However, the molecular mechanisms that operate during material deformation and stiffening make stretchability and conductivity fundamentally difficult properties to combine. The macroscale stretching of solids elongates chemical bonds, leading to the reduced overlap and delocalization of electronic orbitals. This conductivity-stretchability dilemma can be exemplified by liquid metals, in which conduction pathways are retained on large deformation but weak interatomic bonds lead to compromised strength. The best-known stretchable conductors use polymer matrices containing percolated networks of high-aspect-ratio nanometre-scale tubes or nanowires to address this dilemma to some extent. Further improvements have been achieved by using fillers (the conductive component) with increased aspect ratio, of all-metallic composition, or with specific alignment (the way the fillers are arranged in the matrix). However, the synthesis and separation of high-aspect-ratio fillers is challenging, stiffness increases with the volume content of metallic filler, and anisotropy increases with alignment. Pre-strained substrates, buckled microwires and three-dimensional microfluidic polymer networks have also been explored. Here we demonstrate stretchable conductors of polyurethane containing spherical nanoparticles deposited by either layer-by-layer assembly or vacuum-assisted flocculation. High conductivity and stretchability were observed in both composites despite the minimal aspect ratio of the nanoparticles. These materials also demonstrate the electronic tunability of mechanical properties, which arise from the dynamic self-organization of the nanoparticles under stress. A modified percolation theory incorporating the self-assembly behaviour of nanoparticles gave an excellent match with the experimental data.

18.
J Am Chem Soc ; 140(51): 18115-18123, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30461275

RESUMEN

Thermoelectric generators can convert heat directly into usable electric power but suffer from low efficiencies and high costs, which have hindered wide-scale applications. Accordingly, an important goal in the field of thermoelectricity is to develop new high performance materials that are composed of more earth-abundant elements. The best systems for midtemperature power generation rely on heavily doped PbTe, but the Te in these materials is scarce in the Earth's crust. PbSe is emerging as a less expensive alternative to PbTe, although it displays inferior performance due to a considerably smaller power factor S2σ, where S is the Seebeck coefficient and σ is electrical conductivity. Here, we present a new p-type PbSe system, Pb0.98Na0.02Se- x%HgSe, which yields a very high power factor of ∼20 µW·cm-1·K-2 at 963 K when x = 2, a 15% improvement over the best performing PbSe- x%MSe materials. The enhancement is attributed to a combination of high carrier mobility and the early onset of band convergence in the Hg-alloyed samples (∼550 K), which results in a significant increase in the Seebeck coefficient. Interestingly, we find that the Hg2+ cations sit at an off-centered position within the PbSe lattice, and we dub the displaced Hg atoms "discordant". DFT calculations indicate that this feature plays a role in lowering thermal conductivity, and we believe that this insight may inspire new design criteria for engineering high performance thermoelectric materials. The high power factor combined with a decrease in thermal conductivity gives a high figure of merit ZT of 1.7 at 970 K, the highest value reported for p-type PbSe to date.

19.
J Am Chem Soc ; 140(7): 2673-2686, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29350916

RESUMEN

In this study, a series of Ge1-xMnxTe (x = 0-0.21) compounds were prepared by a melting-quenching-annealing process combined with spark plasma sintering (SPS). The effect of alloying MnTe into GeTe on the structure and thermoelectric properties of Ge1-xMnxTe is profound. With increasing content of MnTe, the structure of the Ge1-xMnxTe compounds gradually changes from rhombohedral to cubic, and the known R3m to Fm-3m phase transition temperature of GeTe moves from 700 K closer to room temperature. First-principles density functional theory calculations show that alloying MnTe into GeTe decreases the energy difference between the light and heavy valence bands in both the R3m and Fm-3m structures, enhancing a multiband character of the valence band edge that increases the hole carrier effective mass. The effect of this band convergence is a significant enhancement in the carrier effective mass from 1.44 m0 (GeTe) to 6.15 m0 (Ge0.85Mn0.15Te). In addition, alloying with MnTe decreases the phonon relaxation time by enhancing alloy scattering, reduces the phonon velocity, and increases Ge vacancies all of which result in an ultralow lattice thermal conductivity of 0.13 W m-1 K-1 at 823 K. Subsequent doping of the Ge0.9Mn0.1Te compositions with Sb lowers the typical very high hole carrier concentration and brings it closer to its optimal value enhancing the power factor, which combined with the ultralow thermal conductivity yields a maximum ZT value of 1.61 at 823 K (for Ge0.86Mn0.10Sb0.04Te). The average ZT value of the compound over the temperature range 400-800 K is 1.09, making it the best GeTe-based thermoelectric material.

20.
J Am Chem Soc ; 140(22): 7021-7031, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29799729

RESUMEN

Thermoelectric devices directly convert heat into electrical energy and are highly desired for emerging applications in waste heat recovery. Currently, PbTe based compounds are the leading thermoelectric materials in the intermediate temperature regime (∼800 K); however, integration into commercial devices has been limited. This is largely because the performance of PbTe, which is maximized ∼900 K, is too low over the temperatures of interest for most potential commercial applications (generally under 600 K). Improving the low temperature performance of PbTe based materials is therefore critical to achieve usage outside of existing niche applications. Here, we provide an in-depth study of the cubic NaPb mSbTe m+2 system of compounds ( m = 1-20) and report that it is an excellent class of low- to medium-temperature thermoelectrics when m = 10-20. We show that the as-cast polycrystalline ingots exhibit degenerate p-type conduction and high maximum ZTs of 1.2-1.4 at 650 K when m = 6-20. Because the ingots are found to be extremely brittle, we utilize spark plasma sintering (SPS) to prepare more mechanically robust samples, and surprisingly, find that SPS results in an undesired change in charge transport toward n-type behavior. We show this unanticipated transition from p-type behavior as ingots to n-type after SPS is due to dissolution of secondary phases that are present in the ingots into the primary matrix during the SPS process, resulting in a transformation from an inhomogeneous state to a solid solution without any observable evidence of nanoscale precipitation. This is in sharp contrast to the seemingly similar AgPbmSbTe m+2 (LAST) system, which is heavily nanostructured. The SPSed NaPb mSbTe m+2 is doped p-type by tuning the cation stoichiometry, i.e., Na1+ xPb m- xSb1- yTe m+2. The optimized compounds have very low lattice thermal conductivities of 1.1-0.55 W·m-1·K-1 over 300-650 K, which enhances the low-intermediate temperature performance and gives rise to maximum ZT values up to 1.6 at 673 K as well as an excellent ZTavg of 1.1 over 323-673 K for m = 10, 20, making Na1+ xPb m- xSb1- yTe m+2 among the highest performing PbTe-based thermoelectrics under 650 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA