Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161266

RESUMEN

Fever can provide a survival advantage during infection. Metabolic processes are sensitive to environmental conditions, but the effect of fever on T cell metabolism is not well characterized. We show that in activated CD8+ T cells, exposure to febrile temperature (39 °C) augmented metabolic activity and T cell effector functions, despite having a limited effect on proliferation or activation marker expression. Transcriptional profiling revealed an up-regulation of mitochondrial pathways, which was consistent with increased mass and metabolism observed in T cells exposed to 39 °C. Through in vitro and in vivo models, we determined that mitochondrial translation is integral to the enhanced metabolic activity and function of CD8+ T cells exposed to febrile temperature. Transiently exposing donor lymphocytes to 39 °C prior to infusion in a myeloid leukemia mouse model conferred enhanced therapeutic efficacy, raising the possibility that exposure of T cells to febrile temperatures could have clinical potential.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Fiebre/inmunología , Mitocondrias/metabolismo , Biosíntesis de Proteínas , Animales , Antineoplásicos/metabolismo , Linfocitos T CD8-positivos/ultraestructura , Citocinas/biosíntesis , Glucosa/metabolismo , Leucemia Mieloide/inmunología , Leucemia Mieloide/patología , Leucemia Mieloide/prevención & control , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitocondrias/ultraestructura , Modelos Biológicos , Temperatura
2.
Haematologica ; 107(7): 1538-1554, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34407601

RESUMEN

Acute graft-versus-host disease (GvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT), a potentially curative treatment for leukemia. Endoplasmic reticulum (ER) stress occurs when the protein folding capacity of the ER is oversaturated. How ER stress modulates tissue homeostasis in the context of alloimmunity is not well understood. We show that ER stress contributes to intestinal tissue injury during GvHD and can be targeted pharmacologically. We observed high levels of ER stress upon GvHD onset in a murine allo- HCT model and in human biopsies. These levels correlated with GvHD severity, underscoring a novel therapeutic potential. Elevated ER stress resulted in increased cell death of intestinal organoids. In a conditional knockout model, deletion of the ER stress regulator transcription factor Xbp1 in intestinal epithelial cells induced a general ER stress signaling disruption and aggravated GvHD lethality. This phenotype was mediated by changes in the production of antimicrobial peptides and the microbiome composition as well as activation of pro-apoptotic signaling. Inhibition of inositol-requiring enzyme 1α (IRE1α), the most conserved signaling branch in ER stress, reduced GvHD development in mice. IRE1α blockade by the small molecule inhibitor 4m8c improved intestinal cell viability, without impairing hematopoietic regeneration and T-cell activity against tumor cells. Our findings in patient samples and mice indicate that excessive ER stress propagates tissue injury during GvHD. Reducing ER stress could improve the outcome of patients suffering from GvHD.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Animales , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Endorribonucleasas/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Ratones , Proteínas Serina-Treonina Quinasas
3.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055052

RESUMEN

Heart failure (HF) is among the main causes of death worldwide. Alterations of sphingosine-1-phosphate (S1P) signaling have been linked to HF as well as to target organ damage that is often associated with HF. S1P's availability is controlled by the cystic fibrosis transmembrane regulator (CFTR), which acts as a critical bottleneck for intracellular S1P degradation. HF induces CFTR downregulation in cells, tissues and organs, including the lung. Whether CFTR alterations during HF also affect systemic and tissue-specific S1P concentrations has not been investigated. Here, we set out to study the relationship between S1P and CFTR expression in the HF lung. Mice with HF, induced by myocardial infarction, were treated with the CFTR corrector compound C18 starting ten weeks post-myocardial infarction for two consecutive weeks. CFTR expression, S1P concentrations, and immune cell frequencies were determined in vehicle- and C18-treated HF mice and sham controls using Western blotting, flow cytometry, mass spectrometry, and qPCR. HF led to decreased pulmonary CFTR expression, which was accompanied by elevated S1P concentrations and a pro-inflammatory state in the lungs. Systemically, HF associated with higher S1P plasma levels compared to sham-operated controls and presented with higher S1P receptor 1-positive immune cells in the spleen. CFTR correction with C18 attenuated the HF-associated alterations in pulmonary CFTR expression and, hence, led to lower pulmonary S1P levels, which was accompanied by reduced lung inflammation. Collectively, these data suggest an important role for the CFTR-S1P axis in HF-mediated systemic and pulmonary inflammation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Lisofosfolípidos/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Animales , Biomarcadores , Fibrosis Quística/terapia , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Expresión Génica , Insuficiencia Cardíaca/diagnóstico , Pulmón/metabolismo , Lisofosfolípidos/sangre , Ratones , Especificidad de Órganos/genética , Neumonía/etiología , Neumonía/metabolismo , Neumonía/patología , Esfingosina/sangre , Esfingosina/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
4.
Haematologica ; 106(8): 2131-2146, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32675222

RESUMEN

Acute graft-versus-host disease causes significant mortality in patients undergoing allogeneic hematopoietic cell transplantation. Immunosuppressive treatment for graft-versus-host disease can impair the beneficial graft-versus-leukemia effect and facilitate malignancy relapse. Therefore, novel approaches that protect and regenerate injured tissues without impeding the donor immune system are needed. Bile acids regulate multiple cellular processes and are in close contact with the intestinal epithelium, a major target of acute graft-versus-host disease. Here, we found that the bile acid pool is reduced following graft-versus-host disease induction in a preclinical model. We evaluated the efficacy of bile acids to protect the intestinal epithelium without reducing anti-tumor immunity. We observed that application of bile acids decreased cytokine-induced cell death in intestinal organoids and cell lines. Systemic prophylactic administration of tauroursodeoxycholic acid, the most potent compound in our in vitro studies, reduced graft-versus-host disease severity in three different murine transplantation models. This effect was mediated by decreased activity of the antigen presentation machinery and subsequent prevention of apoptosis of the intestinal epithelium. Moreover, bile acid administration did not alter the bacterial composition in the intestine suggesting that its effects are cell-specific and independent of the microbiome. Treatment of human and murine leukemic cell lines with tauroursodeoxycholic acid did not interfere with the expression of antigen presentation-related molecules. Systemic T cell expansion and especially their cytotoxic capacity against leukemic cells remained intact. This study establishes a role for bile acids in the prevention of acute graft-versus-host disease without impairing the graft-versus-leukemia effect. In particular, we provide a scientific rationale for the systematic use of tauroursodeoxycholic acid in patients undergoing allogeneic hematopoietic cell transplantation.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia , Animales , Presentación de Antígeno , Ácidos y Sales Biliares , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Intestinos , Ratones , Trasplante Homólogo
5.
Cytotherapy ; 23(4): 293-300, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33526382

RESUMEN

BACKGROUND AIMS: Cell-based therapies of pulmonary diseases with mesenchymal stromal cells (MSCs) are increasingly under experimental investigation. In most of these, MSCs are administered intravenously or by direct intratracheal instillation. A parallel approach is to administer the cells into the lung by endoscopic atomization (spraying). In a previous study, the authors developed a flexible endoscopic atomization device that allows administration of respiratory epithelial cells in the lungs with high survival. METHODS: In this study, the authors evaluated the feasibility of spraying MSCs with two different endoscopic atomization devices (air and pressure atomization). Following atomization, cell viability was evaluated with live/dead staining. Subsequent effects on cytotoxicity, trilineage differentiation and expression of MSC-specific markers as well as on MSC metabolic activity and morphology were analyzed for up to 7 days. RESULTS: MSC viability immediately after spraying and subsequent metabolic activity for 7 days was not influenced by either of the devices. Slightly higher cytotoxicity rates could be observed for pressure-atomized compared with control and air-atomized MSCs over 7 days. Flow cytometry revealed no changes in characteristic MSC cell surface marker expression, and morphology remained unchanged. Standard differentiation into osteocytes, chondrocytes and adipocytes was inducible after atomization. CONCLUSIONS: In the literature, a minimal survival of 50% was previously defined as the cutoff value for successful cell atomization. This is easily met with both of the authors' devices, with more than 90% survival. Thus, there is a potential role for atomization in intrapulmonary MSC-based cell therapies, as it is a feasible and easily utilizable approach based on clinically available equipment.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Diferenciación Celular , Supervivencia Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas , Pulmón
6.
Am J Respir Cell Mol Biol ; 62(6): 681-691, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31991090

RESUMEN

Chronic lung diseases (CLDs), such as chronic obstructive pulmonary disease, interstitial lung disease, and lung cancer, are among the leading causes of morbidity globally and impose major health and financial burdens on patients and society. Effective treatments are scarce, and relevant human model systems to effectively study CLD pathomechanisms and thus discover and validate potential new targets and therapies are needed. Precision-cut lung slices (PCLS) from healthy and diseased human tissue represent one promising tool that can closely recapitulate the complexity of the lung's native environment, and recently, improved methodologies and accessibility to human tissue have led to an increased use of PCLS in CLD research. Here, we discuss approaches that use human PCLS to advance our understanding of CLD development, as well as drug discovery and validation for CLDs. PCLS enable investigators to study complex interactions among different cell types and the extracellular matrix in the native three-dimensional architecture of the lung. PCLS further allow for high-resolution (live) imaging of cellular functions in several dimensions. Importantly, PCLS can be derived from diseased lung tissue upon lung surgery or transplantation, thus allowing the study of CLDs in living human tissue. Moreover, CLDs can be modeled in PCLS derived from normal lung tissue to mimic the onset and progression of CLDs, complementing studies in end-stage diseased tissue. Altogether, PCLS are emerging as a remarkable tool to further bridge the gap between target identification and translation into clinical studies, and thus open novel avenues for future precision medicine approaches.


Asunto(s)
Enfermedades Pulmonares/patología , Pulmón/patología , Microtomía/métodos , Manejo de Especímenes/métodos , Animales , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Humanos , Fibrosis Pulmonar Idiopática/patología , Neoplasias Pulmonares/patología , Ratones , Enfermedad Pulmonar Obstructiva Crónica/patología
7.
EMBO J ; 35(2): 143-61, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26657898

RESUMEN

Despite being mutated in cancer and RASopathies, the role of the activation segment (AS) has not been addressed for B-Raf signaling in vivo. Here, we generated a conditional knock-in mouse allowing the expression of the B-Raf(AVKA) mutant in which the AS phosphoacceptor sites T599 and S602 are replaced by alanine residues. Surprisingly, despite producing a kinase-impaired protein, the Braf(AVKA) allele does not phenocopy the lethality of Braf-knockout or paradoxically acting knock-in alleles. However, Braf(AVKA) mice display abnormalities in the hematopoietic system, a distinct facial morphology, reduced ERK pathway activity in the brain, and an abnormal gait. This phenotype suggests that maximum B-Raf activity is required for the proper development, function, and maintenance of certain cell populations. By establishing conditional murine embryonic fibroblast cultures, we further show that MEK/ERK phosphorylation and the immediate early gene response toward growth factors are impaired in the presence of B-Raf(AVKA). Importantly, alanine substitution of T599/S602 impairs the transformation potential of oncogenic non-V600E B-Raf mutants and a fusion protein, suggesting that blocking their phosphorylation could represent an alternative strategy to ATP-competitive inhibitors.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Animales , Proliferación Celular/genética , Proliferación Celular/fisiología , Células Cultivadas , Activación Enzimática/genética , Activación Enzimática/fisiología , Femenino , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Masculino , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Biológicos , Mutación , Fosforilación , Transducción de Señal/genética , Transducción de Señal/fisiología
8.
Am J Respir Cell Mol Biol ; 61(4): 429-439, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31573338

RESUMEN

The University of Vermont Larner College of Medicine, in collaboration with the National Heart, Lung, and Blood Institute (NHLBI), the Alpha-1 Foundation, the American Thoracic Society, the Cystic Fibrosis Foundation, the European Respiratory Society, the International Society for Cell & Gene Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop titled "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases" from July 24 through 27, 2017, at the University of Vermont, Burlington, Vermont. The conference objectives were to review and discuss current understanding of the following topics: 1) stem and progenitor cell biology and the role that they play in endogenous repair or as cell therapies after lung injury, 2) the emerging role of extracellular vesicles as potential therapies, 3) ex vivo bioengineering of lung and airway tissue, and 4) progress in induced pluripotent stem cell protocols for deriving lung cell types and applications in disease modeling. All of these topics are research areas in which significant and exciting progress has been made over the past few years. In addition, issues surrounding the ethics and regulation of cell therapies worldwide were discussed, with a special emphasis on combating the growing problem of unproven cell interventions being administered to patients with lung diseases. Finally, future research directions were discussed, and opportunities for both basic and translational research were identified.


Asunto(s)
Bioingeniería , Tratamiento Basado en Trasplante de Células y Tejidos , Enfermedades Pulmonares/terapia , Células Madre , Bioingeniería/tendencias , Tratamiento Basado en Trasplante de Células y Tejidos/ética , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Ensayos Clínicos como Asunto , Vesículas Extracelulares/trasplante , Predicción , Prioridades en Salud , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/trasplante , Colaboración Intersectorial , Pulmón/citología , Investigación , Pequeña Empresa , Nicho de Células Madre , Ingeniería de Tejidos/métodos , Ingeniería de Tejidos/tendencias , Investigación Biomédica Traslacional/tendencias
9.
Blood ; 128(3): 427-39, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27222477

RESUMEN

During allogeneic hematopoietic cell transplantation (alloHCT), nonhematopoietic cell interleukin-33 (IL-33) is augmented and released by recipient conditioning to promote type 1 alloimmunity and lethal acute graft-versus-host disease (GVHD). Yet, IL-33 is highly pleiotropic and exhibits potent immunoregulatory properties in the absence of coincident proinflammatory stimuli. We tested whether peri-alloHCT IL-33 delivery can protect against development of GVHD by augmenting IL-33-associated regulatory mechanisms. IL-33 administration augmented the frequency of regulatory T cells (Tregs) expressing the IL-33 receptor, suppression of tumorigenicity-2 (ST2), which persist following total body irradiation. ST2 expression is not exclusive to Tregs and IL-33 expands innate immune cells with regulatory or reparative properties. However, selective depletion of recipient Foxp3(+) cells concurrent with peri-alloHCT IL-33 administration accelerated acute GVHD lethality. IL-33-expanded Tregs protected recipients from GVHD by controlling macrophage activation and preventing accumulation of effector T cells in GVHD-target tissue. IL-33 stimulation of ST2 on Tregs activates p38 MAPK, which drives expansion of the ST2(+) Treg subset. Associated mechanistic studies revealed that proliferating Tregs exhibit IL-33-independent upregulation of ST2 and the adoptive transfer of st2(+) but not st2(-) Tregs mediated GVHD protection. In total, these data demonstrate the protective capacity of peri-alloHCT administration of IL-33 and IL-33-responsive Tregs in mouse models of acute GVHD. These findings provide strong support that the immunoregulatory relationship between IL-33 and Tregs can be harnessed therapeutically to prevent GVHD after alloHCT for treatment of malignancy or as a means for tolerance induction in solid organ transplantation.


Asunto(s)
Enfermedad Injerto contra Huésped/prevención & control , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-33/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Trasplante de Células Madre de Sangre Periférica , Enfermedad Aguda , Aloinjertos , Animales , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Proteína 1 Similar al Receptor de Interleucina-1/genética , Activación de Macrófagos/genética , Macrófagos/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Receptores de Interleucina/genética , Receptores de Interleucina/inmunología , Linfocitos T Reguladores
10.
Curr Opin Organ Transplant ; 23(6): 673-678, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30300330

RESUMEN

PURPOSE OF REVIEW: Bioengineering the lung based on its natural extracellular matrix (ECM) offers novel opportunities to overcome the shortage of donors, to reduce chronic allograft rejections, and to improve the median survival rate of transplanted patients. During the last decade, lung tissue engineering has advanced rapidly to combine scaffolds, cells, and biologically active molecules into functional tissues to restore or improve the lung's main function, gas exchange. This review will inspect the current progress in lung bioengineering using decellularized and recellularized lung scaffolds and highlight future challenges in the field. RECENT FINDINGS: Lung decellularization and recellularization protocols have provided researchers with tools to progress toward functional lung tissue engineering. However, there is continuous evolution and refinement particularly for optimization of lung recellularization. These further the possibility of developing a transplantable bioartificial lung. SUMMARY: Bioengineering the lung using recellularized scaffolds could offer a curative option for patients with end-stage organ failure but its accomplishment remains unclear in the short-term. However, the state-of-the-art of techniques described in this review will increase our knowledge of the lung ECM and of chemical and mechanical cues which drive cell repopulation to improve the advances in lung regeneration and lung tissue engineering.


Asunto(s)
Trasplante de Pulmón/métodos , Pulmón/patología , Ingeniería de Tejidos/métodos , Animales , Humanos
11.
Proteomics ; 17(1-2)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27891773

RESUMEN

Cigarette smoke is the most relevant risk factor for the development of lung cancer and chronic obstructive pulmonary disease. Many of its more than 4500 chemicals are highly reactive, thereby altering protein structure and function. Here, we used subcellular fractionation coupled to label-free quantitative MS to globally assess alterations in the proteome of different compartments of lung epithelial cells upon exposure to cigarette smoke extract. Proteomic profiling of the human alveolar derived cell line A549 revealed the most pronounced changes within the cellular secretome with preferential downregulation of proteins involved in wound healing and extracellular matrix organization. In particular, secretion of secreted protein acidic and rich in cysteine, a matricellular protein that functions in tissue response to injury, was consistently diminished by cigarette smoke extract in various pulmonary epithelial cell lines and primary cells of human and mouse origin as well as in mouse ex vivo lung tissue cultures. Our study reveals a previously unrecognized acute response of lung epithelial cells to cigarette smoke that includes altered secretion of proteins involved in extracellular matrix organization and wound healing. This may contribute to sustained alterations in tissue remodeling as observed in lung cancer and chronic obstructive pulmonary disease.


Asunto(s)
Células Epiteliales/metabolismo , Pulmón/citología , Fumar/efectos adversos , Línea Celular , Células Epiteliales/efectos de los fármacos , Humanos , Proteómica/métodos , Cicatrización de Heridas/efectos de los fármacos
12.
Eur Respir J ; 46(4): 1150-66, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25929950

RESUMEN

Chronic obstructive pulmonary disease (COPD) is characterised by a progressive loss of lung tissue. Inducing repair processes within the adult diseased lung is of major interest and Wnt/ß-catenin signalling represents a promising target for lung repair. However, the translation of novel therapeutic targets from model systems into clinical use remains a major challenge.We generated murine and patient-derived three-dimensional (3D) ex vivo lung tissue cultures (LTCs), which closely mimic the 3D lung microenvironment in vivo. Using two well-known glycogen synthase kinase-3ß inhibitors, lithium chloride (LiCl) and CHIR 99021 (CT), we determined Wnt/ß-catenin-driven lung repair processes in high spatiotemporal resolution using quantitative PCR, Western blotting, ELISA, (immuno)histological assessment, and four-dimensional confocal live tissue imaging.Viable 3D-LTCs exhibited preserved lung structure and function for up to 5 days. We demonstrate successful Wnt/ß-catenin signal activation in murine and patient-derived 3D-LTCs from COPD patients. Wnt/ß-catenin signalling led to increased alveolar epithelial cell marker expression, decreased matrix metalloproteinase-12 expression, as well as altered macrophage activity and elastin remodelling. Importantly, induction of surfactant protein C significantly correlated with disease stage (per cent predicted forced expiratory volume in 1 s) in patient-derived 3D-LTCs.Patient-derived 3D-LTCs represent a valuable tool to analyse potential targets and drugs for lung repair. Enhanced Wnt/ß-catenin signalling attenuated pathological features of patient-derived COPD 3D-LTCs.


Asunto(s)
Pulmón/citología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Proteínas Wnt/metabolismo , Adulto , Anciano , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Enfisema/fisiopatología , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/citología , Femenino , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Humanos , Cloruro de Litio/química , Pulmón/fisiopatología , Macrófagos Alveolares/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Piridinas/química , Pirimidinas/química , Transducción de Señal , Porcinos , Cicatrización de Heridas , beta Catenina/metabolismo
13.
Biomed Pharmacother ; 162: 114628, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37018991

RESUMEN

Acquired cystic fibrosis transmembrane regulator (CFTR) dysfunctions have been associated with several conditions, including myocardial infarction (MI). Here, CFTR is downregulated in brain, heart, and lung tissue and associates with inflammation and degenerative processes. Therapeutically increasing CFTR expression attenuates these effects. Whether potentiating CFTR function yields similar beneficial effects post-MI is unknown. The CFTR potentiator ivacaftor is currently in clinical trials for treatment of acquired CFTR dysfunction associated with chronic obstructive pulmonary disease and chronic bronchitis. Thus, we tested ivacaftor as therapeutic strategy for MI-associated target tissue inflammation that is characterized by CFTR alterations. MI was induced in male C57Bl/6 mice by ligation of the left anterior descending coronary artery. Mice were treated with ivacaftor starting ten weeks post-MI for two consecutive weeks. Systemic ivacaftor treatment ameliorates hippocampal neuron dendritic atrophy and spine loss and attenuates hippocampus-dependent memory deficits occurring post-MI. Similarly, ivacaftor therapy mitigates MI-associated neuroinflammation (i.e., reduces higher proportions of activated microglia). Systemically, ivacaftor leads to higher frequencies of circulating Ly6C+ and Ly6Chi cells compared to vehicle-treated MI mice. Likewise, an ivacaftor-mediated augmentation of MI-associated pro-inflammatory macrophage phenotype characterized by higher CD80-positivity is observed in the MI lung. In vitro, ivacaftor does not alter LPS-induced CD80 and tumor necrosis factor alpha mRNA increases in BV2 microglial cells, while augmenting mRNA levels of these markers in mouse macrophages and differentiated human THP-1-derived macrophages. Our results suggest that ivacaftor promotes contrasting effects depending on target tissue post-MI, which may be largely dependent on its effects on different myeloid cell types.


Asunto(s)
Fibrosis Quística , Infarto del Miocardio , Masculino , Humanos , Ratones , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Pulmón/metabolismo , Encéfalo/metabolismo , Inflamación/metabolismo , Infarto del Miocardio/metabolismo , Mutación
14.
Biomaterials ; 293: 121960, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36580718

RESUMEN

Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), are characterized by regional extracellular matrix (ECM) remodeling which contributes to disease progression. Previous proteomic studies on whole decellularized lungs have provided detailed characterization on the impact of COPD and IPF on total lung ECM composition. However, such studies are unable to determine the differences in ECM composition between individual anatomical regions of the lung. Here, we employ a post-decellularization dissection method to compare the ECM composition of whole decellularized lungs (wECM) and specific anatomical lung regions, including alveolar-enriched ECM (aECM), airway ECM (airECM), and vasculature ECM (vECM), between non-diseased (ND), COPD, and IPF human lungs. We demonstrate, using mass spectrometry, that individual regions possess a unique ECM signature characterized primarily by differences in collagen composition and basement-membrane associated proteins, including ECM glycoproteins. We further demonstrate that both COPD and IPF lead to alterations in lung ECM composition in a region-specific manner, including enrichment of type-III collagen and fibulin in IPF aECM. Taken together, this study provides methodology for future studies, including isolation of region-specific lung biomaterials, as well as a dataset that may be applied for the identification of novel ECM targets for therapeutics.


Asunto(s)
Proteínas de la Matriz Extracelular , Matriz Extracelular , Fibrosis Pulmonar Idiopática , Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Colágeno/análisis , Matriz Extracelular/química , Proteínas de la Matriz Extracelular/análisis , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/química , Proteómica/métodos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
15.
Sci Rep ; 13(1): 12057, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491483

RESUMEN

Alveolar type 2 epithelial cells (AT2s) derived from human induced pluripotent stem cells (iAT2s) have rapidly contributed to our understanding of AT2 function and disease. However, while iAT2s are primarily cultured in three-dimensional (3D) Matrigel, a matrix derived from cancerous mouse tissue, it is unclear how a physiologically relevant matrix will impact iAT2s phenotype. As extracellular matrix (ECM) is recognized as a vital component in directing cellular function and differentiation, we sought to derive hydrogels from decellularized human lung alveolar-enriched ECM (aECM) to provide an ex vivo model to characterize the role of physiologically relevant ECM on iAT2 phenotype. We demonstrate aECM hydrogels retain critical in situ ECM components, including structural and basement membrane proteins. While aECM hydrogels facilitate iAT2 proliferation and alveolosphere formation, a subset of iAT2s rapidly change morphology to thin and elongated ring-like cells. This morphological change correlates with upregulation of recently described iAT2-derived transitional cell state genetic markers. As such, we demonstrate a potentially underappreciated role of physiologically relevant aECM in iAT2 differentiation.


Asunto(s)
Hidrogeles , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Hidrogeles/química , Matriz Extracelular/metabolismo , Células Epiteliales Alveolares , Diferenciación Celular/fisiología , Células Epiteliales
16.
Leukemia ; 37(7): 1474-1484, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37161070

RESUMEN

The persistence of leukemic stem cells (LSCs) represents a problem in the therapy of chronic myeloid leukemia (CML). Hence, it is of utmost importance to explore the underlying mechanisms to develop new therapeutic approaches to cure CML. Using the genetically engineered ScltTA/TRE-BCR::ABL1 mouse model for chronic phase CML, we previously demonstrated that the loss of the docking protein GAB2 counteracts the infiltration of mast cells (MCs) in the bone marrow (BM) of BCR::ABL1 positive mice. Here, we show for the first time that BCR::ABL1 drives the cytokine independent expansion of BM derived MCs and sensitizes them for FcεRI triggered degranulation. Importantly, we demonstrate that genetic mast cell deficiency conferred by the Cpa3Cre allele prevents BCR::ABL1 induced splenomegaly and impairs the production of pro-inflammatory cytokines. Furthermore, we show in CML patients that splenomegaly is associated with high BM MC counts and that upregulation of pro-inflammatory cytokines in patient serum samples correlates with tryptase levels. Finally, MC-associated transcripts were elevated in human CML BM samples. Thus, our study identifies MCs as essential contributors to disease progression and suggests considering them as an additional target in CML therapy. Mast cells play a key role in the pro-inflammatory tumor microenvironment of the bone marrow. Shown is a cartoon summarizing our results from the mouse model. BCR::ABL1 transformed MCs, as part of the malignant clone, are essential for the elevation of pro-inflammatory cytokines, known to be important in disease initiation and progression.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Ratones , Animales , Mastocitos/metabolismo , Esplenomegalia/etiología , Esplenomegalia/prevención & control , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Citocinas , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Inhibidores de Proteínas Quinasas/uso terapéutico , Microambiente Tumoral
17.
Front Immunol ; 13: 928300, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967318

RESUMEN

Heart failure (HF) affects 64 million people worldwide. Despite advancements in prevention and therapy, quality of life remains poor for many HF patients due to associated target organ damage. Pulmonary manifestations of HF are well-established. However, difficulties in the treatment of HF patients with chronic lung phenotypes remain as the underlying patho-mechanistic links are still incompletely understood. Here, we aim to investigate the cystic fibrosis transmembrane regulator (CFTR) involvement in lung inflammation during HF, a concept that may provide new mechanism-based therapies for HF patients with pulmonary complications. In a mouse model of HF, pharmacological CFTR corrector therapy (Lumacaftor (Lum)) was applied systemically or lung-specifically for 2 weeks, and the lungs were analyzed using histology, flow cytometry, western blotting, and qPCR. Experimental HF associated with an apparent lung phenotype characterized by vascular inflammation and remodeling, pronounced tissue inflammation as evidenced by infiltration of pro-inflammatory monocytes, and a reduction of pulmonary CFTR+ cells. Moreover, the elevation of a classically-activated phenotype of non-alveolar macrophages coincided with a cell-specific reduction of CFTR expression. Pharmacological correction of CFTR with Lum mitigated the HF-induced downregulation of pulmonary CFTR expression and increased the proportion of CFTR+ cells in the lung. Lum treatment diminished the HF-associated elevation of classically-activated non-alveolar macrophages, while promoting an alternatively-activated macrophage phenotype within the lungs. Collectively, our data suggest that downregulation of CFTR in the HF lung extends to non-alveolar macrophages with consequences for tissue inflammation and vascular structure. Pharmacological CFTR correction possesses the capacity to alleviate HF-associated lung inflammation.


Asunto(s)
Fibrosis Quística , Insuficiencia Cardíaca , Neumonía , Animales , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Humanos , Inflamación , Ratones , Neumonía/tratamiento farmacológico , Neumonía/etiología , Calidad de Vida
18.
Cancer Gene Ther ; 29(11): 1751-1760, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35794338

RESUMEN

B-cell precursor acute lymphoblastic leukemias (B-ALL) are characterized by the activation of signaling pathways, which are involved in survival and proliferation of leukemia cells. Using an unbiased shRNA library screen enriched for targeting signaling pathways, we identified MTOR as the key gene on which human B-ALL E2A-PBX1+ RCH-ACV cells are dependent. Using genetic and pharmacologic approaches, we investigated whether B-ALL cells depend on MTOR upstream signaling pathways including PI3K/AKT and the complexes MTORC1 or MTORC2 for proliferation and survival in vitro and in vivo. Notably, the combined inhibition of MTOR and AKT shows a synergistic effect on decreased cell proliferation in B-ALL with different karyotypes. Hence, B-ALL cells were more dependent on MTORC2 rather than MTORC1 complex in genetic assays. Using cell metabolomics, we identified changes in mitochondrial fuel oxidation after shRNA-mediated knockdown or pharmacological inhibition of MTOR. Dependence of the cells on fatty acid metabolism for their energy production was increased upon inhibition of MTOR and associated upstream signaling pathways, disclosing a possible target for a combination therapy. In conclusion, B-ALL are dependent on the PI3K/AKT/MTOR signaling pathway and the combination of specific small molecules targeting this pathway appears to be promising for the treatment of B-ALL patients.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , ARN Interferente Pequeño , Transducción de Señal , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proliferación Celular , Línea Celular Tumoral
19.
EBioMedicine ; 86: 104384, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36462404

RESUMEN

BACKGROUND: Cognitive impairment is a serious comorbidity in heart failure patients, but effective therapies are lacking. We investigated the mechanisms that alter hippocampal neurons following myocardial infarction (MI). METHODS: MI was induced in male C57Bl/6 mice by left anterior descending coronary artery ligation. We utilised standard procedures to measure cystic fibrosis transmembrane regulator (CFTR) protein levels, inflammatory mediator expression, neuronal structure, and hippocampal memory. Using in vitro and in vivo approaches, we assessed the role of neuroinflammation in hippocampal neuron degradation and the therapeutic potential of CFTR correction as an intervention. FINDINGS: Hippocampal dendrite length and spine density are reduced after MI, effects that associate with decreased neuronal CFTR expression and concomitant microglia activation and inflammatory cytokine expression. Conditioned medium from lipopolysaccharide-stimulated microglia (LCM) reduces neuronal cell CFTR protein expression and the mRNA expression of the synaptic regulator post-synaptic density protein 95 (PSD-95) in vitro. Blocking CFTR activity also down-regulates PSD-95 in neurons, indicating a relationship between CFTR expression and neuronal health. Pharmacologically correcting CFTR expression in vitro rescues the LCM-mediated down-regulation of PSD-95. In vivo, pharmacologically increasing hippocampal neuron CFTR expression improves MI-associated alterations in neuronal arborisation, spine density, and memory function, with a wide therapeutic time window. INTERPRETATION: Our results indicate that CFTR therapeutics improve inflammation-induced alterations in hippocampal neuronal structure and attenuate memory dysfunction following MI. FUNDING: Knut and Alice Wallenberg Foundation [F 2015/2112]; Swedish Research Council [VR; 2017-01243]; the German Research Foundation [DFG; ME 4667/2-1]; Hjärnfonden [FO2021-0112]; The Crafoord Foundation; Åke Wibergs Stiftelse [M19-0380], NMMP 2021 [V2021-2102]; the Albert Påhlsson Research Foundation; STINT [MG19-8469], Lund University; Canadian Institutes of Health Research [PJT-153269] and a Heart and Stroke Foundation of Ontario Mid-Career Investigator Award.


Asunto(s)
Amnesia Retrógrada , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Infarto del Miocardio , Animales , Masculino , Ratones , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Lipopolisacáridos , Memoria a Largo Plazo/fisiología , Ratones Endogámicos C57BL , Infarto del Miocardio/complicaciones , Infarto del Miocardio/tratamiento farmacológico , Ontario , Amnesia Retrógrada/tratamiento farmacológico , Amnesia Retrógrada/metabolismo , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo
20.
Pulm Pharmacol Ther ; 24(5): 466-70, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21356323

RESUMEN

Chronic lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF) are all characterized by structural changes of the airways and/or lungs that limit airflow and/or gas exchange. Currently, there is no therapy available that adequately targets the structural remodeling of the airways and lungs in these diseases. This underscores the great need for insight into the mechanisms that underpin the development of airway remodeling, fibrosis and emphysema in these diseases, in order to identify suitable drug targets. It is increasingly evident that structural cell-cell communication within the lung is central to the development of remodeling, indicating that a more integrative approach should be considered when studying molecular and cellular mechanisms of remodeling. Therefore, there is a great need to study molecular and cellular physiological and pathophysiological mechanisms in as much detail as possible, but with as little as possible loss of the physiological context. Here, we will review the use of models such as cellular co-culture, tissue culture, and lung slice culture, in which cell-cell communication and tissue architecture are better preserved or mimicked than in cell culture, and zoom in on the usefulness of molecular and cellular biological tools in these complex model systems to read out or control signaling and gene/protein regulation.


Asunto(s)
Sistemas de Liberación de Medicamentos , Modelos Biológicos , Enfermedades Respiratorias/fisiopatología , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Animales , Comunicación Celular , Células Cultivadas , Enfermedad Crónica , Técnicas de Cultivo , Humanos , Biología Molecular/métodos , Enfermedades Respiratorias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA